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Abstract

This paper examines a unifying model of contests that distinguishes be-

tween unobservable actions and observable but noisy performance. Special

versions of the model have been used to provide microfoundations for the

popular generalized lottery contest success function. However, extensions

to contests with exogenous or endogenous biases have strayed from the

microfoundations. Consequently, biases and design instruments have been

modelled in ad hoc and poorly founded ways. Here, starting directly from

the stochastic-performance foundation, internally consistent and fully op-

timal contests are derived from �rst principles. The problem resembles a

contracting problem. The optimally designed contest is not a generalized

lottery contest.
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1 Introduction

A broad range of economic interactions are contest-like in nature. For the pur-

poses of this paper, think of a contest as an environment in which rival agents

take costly actions that in�uence the probability with which a �xed and indivis-

ible prize is won. Examples include rent-seeking, lobbying, innovation contests,

promotion contests, sports, etc. The winner of the prize need not necessarily be

the agent who took the most costly action. The mapping from actions to winning

probabilities are formalized in the literature by a contest success function (CSF),

which may or may not be considered to be a black box.1

Generalized lottery or ratio-form CSFs are particularly popular. Here, in an

unbiased contest with n agents, agent i wins with probability

pi(a1; a2; :::; an) =
fi(ai)Pn
j=1 fj(aj)

; (1)

where aj � 0 is agent j�s action and where the impact functions fj(aj) � 0

are increasing in aj. For instance, (1) describes a community ra­ e where an

expenditure of ai dollars by agent i buys fi(ai) ra­ e tickets. Similarly, Tullock

(1980) speaks of a �wealthy eccentric�that for his own reasons sponsors a lottery.

Of course, this is just one possible CSF among many.

This paper examines a general and unifying model of contests. Special cases

of the model have been explored before. For instance, it is known that the model

delivers microfoundations for (1) under additional and restrictive assumptions.

It is argued that extensions to biased contests have not always stayed true to

the premise of these microfoundations. The resulting analysis can be criticized

as being ad hoc or poorly founded. This paper provided an internally consistent

treatment of the optimal design of biased contests in the general model.

The following simple story is proposed. First, actions are not directly observ-

able but a noisy and observable signal is produced by each agent. Typically, the

noisy signal, qi, can be thought of as the stochastic quality of agent i�s perfor-

mance. In a promotion contest among salespeople, a salesman�s performance is

1The literature on contests and contest design is enormous. See Konrad (2009), Vojnoníc
(2015), Mealem and Nitzan (2016), Corchón and Serena (2018), Chowdhury, Esteve-González,
and Mukherjee (2019), and Fu and Wu (2019) for recent surveys.
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his volume of sales. In innovation contests, a �rm�s performance is the quality of

its innovation. In a competition for a scholarship, a student�s performance is his

GPA to date. Similarly, a lobbyist�s performance is how compelling he can make

his agenda or proposal sound. The winner is the agent with the performance of

the highest quality. However, the agent�s action, ai, impacts the distribution,

Gi(qijai), of his performance. It is unclear what the most reasonable speci�cation
of Gi(qijai) is, and in any case it is probably sensitive to the application.2

The stochastic performance model nests popular CSFs. First, all-pay auc-

tions or deterministic contests trivially arise if Gi(qijai) is degenerate such that
performance and action coincide. Second, in Lazear and Rosen�s (1981) rank-

order tournament, the action shifts the location of the non-degenerate distribu-

tion function. Finally, there are yet other speci�cations of Gi(qijai) for which the
probability that agent i delivers the best performance reduces to exactly (1).

For instance, (1) materializes if qi is the best of fi(ai) draws from some distrib-

ution that is common to all agents, as in Fullerton and McAfee�s (1999) research

tournament.3 This and similar microfoundation for (1) are emphasized in e.g.

the surveys by Konrad (2009), Vojnoníc (2015), Corchón and Serena (2018), and

Fu and Wu (2019). However, if this is how a CSF such as (1) is justi�ed, internal

consistency demands that any extension that moves beyond unbiased contests

must continue to respect the basic stochastic performance premise. This paper

seeks to understand the implications of stochastic performance for contest design.

At a very basic level, the premise that actions are unobservable limits the

ways in which contests can be manipulated. As explained next, the literature

has seemingly ignored this conceptual limitation. However, the assumption that

performances are observable provides structure and direction. Thus, it is possible

to derive internally consistent and fully optimal contests from �rst principles.

The standard approach takes the ratio-form in (1) as a jumping-o¤ point

and asks how a designer can transform fi to gainfully manipulate the CSF. It is

2Recently, Bastani, Giebe, and Gürtler (2019) have independently proposed a virtually
identical model. However, their focus is on comparative statics in unbiased contests.

3For other justi�cations of (1) in this vein, see Hirschleifer and Riley (1992), Clark and Riis
(1996), Baye and Hoppe (2003), and Jia (2008). Skapardas (1996) and Clark and Riis (1998)
instead take an axiomatic approach to justifying (1). Corchón and Dahm (2011) consider a
designer who cannot commit but who is not an expected utility maximizer.
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popular to assume that agent i may bene�t from an additive bonus, �i � 0, or

a multiplicative bonus, bi � 0, or both.4 Agent i�s action is then evaluated by

bifi(ai) + �i rather than just by fi(ai). Agent i is said to have a head start over

agent j if �i > �j and to be handicapped relative to agent j if bi < bj. The CSF

becomes bpi(a1; a2; :::; an) = bifi(ai) + �iPn
j=1 (bjfj(aj) + �j)

: (2)

Implicitly, (2) seems to require that fi(ai) is observable. How else can the bonuses

be applied to fi(ai)? It is much less clear where (2) comes from if fi(ai) is not

observable. Simply put, a compelling microfoundation for (2) is missing.

It is as if (2) is obtained by manipulating (1) directly. However, the CSF is

not a primitive of the stochastic performance model. Rather, the CSF is just a

reduced form where the uncertainty over performances has been integrated out

in order to express winning probabilities as functions only of actions. A sounder

approach is to return to the foundation or primitives of the model and build

biases into the model from the ground up whenever possible.

Thus, this paper takes direction from the stochastic performance premise to

design optimal contests. There are at least two ways of manipulating the con-

test. Handicapping in golf is a �rules-based�change to the contest; the athlete�s

performance is observed but then recalculated to determine the winner. Another

example is preferential treatment in an admission or promotion contest where

the winner need not be the agent with the best entrance score or sales record.

These examples require performances to be observable. Handicapping in horse

racing as described in Chowdhury, Esteve-González, and Mukherjee (2019) is

a �technology-based� intervention where some horses are made to carry extra

weight. Here, the unimpeded performance is not observed. This paper focuses

on the former type of contest design, which is more easily formalized.5

4A large literature examines one of these instruments in isolation or both in combination.
See e.g. Nti (2004), Epstein, Mealem, and Nitzan (2011), Franke (2012), Franke et. al. (2013),
Franke, Leininger, and Wasser (2018), and Fu and Wu (2020). See Mealem and Nitzan (2016)
and Chowdhury, Esteve-González, and Mukherjee (2019) for comprehensive surveys of prefer-
ential treatment and a¢ rmative action in contests.

5Technology-based interventions can often be thought of as manipulating Gi(qijai). Some
contests combine both interventions. First, salesmen may be assigned to di¤erent regions or
product types, with consequences forGi(qijai). Then, sales are compared using some potentially
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The idea is to view the problem as a kind of contracting or team moral haz-

ard problem, with the distributions Gi(qijai) as the primitives. Instead of o¤ering
wage schedules as in Holmström (1982), it is winning probabilities that are manip-

ulated to incentivize e¤ort. Thus, the task is to design and commit to an �assign-

ment rule� that maps (q1; q2; :::; qn) into winning probabilities, Pi(q1; q2; :::; qn),

subject to incentive compatibility constraints. This is a well-de�ned and entirely

unambiguous problem. Hence, there is no reason a priori to impose ad hoc as-

sumptions on the functional form that the biased CSF must take. Instead, the

stochastic performance foundation provides all the structure that is needed to

tackle the problem. Likewise, it is not necessary to restrict attention to those

Gi(qijai) that yield (1) in the unbiased case. In sum, the contract theory approach
makes it possible to handle stochastic performance in much more generality.

Focus is on a designer whose expected utility depends only on, and is increas-

ing in, the agents�actions. Under familiar technical assumptions, the main result

is that for all such objective functions, the fundamental structure of the optimal

contest is essentially the same. The optimal assignment rule is deterministic and

can be implemented by rescaling each agent�s likelihood-ratio by an individual-

speci�c factor. The prize is then assigned to the agent with the highest rescaled

likelihood-ratio. Thus, the paper identi�es a guiding principle for contest design

that holds for a large class of distribution functions and objective functions.

Given the optimal assignment rule, the uncertainty over performances can be

integrated out to derive the implied endogenous CSF. In Fullerton and McAfee�s

(1999) model, the resulting CSF does not generically reduce to (2). Hence, a key

message is that even if the ratio-form is valid in an unbiased contest, it is not

justi�ed to con�ne attention to the ratio-form when the contest is manipulated.

Although the contribution of the paper is primarily methodological, the way in

which contest design is approached has signi�cant implications. Just one example

of this comes from the fact that the literature that is based on (2) has concluded

that the optimal design in a two-agent contest leads to a completely level playing

�eld. However, this conclusion no longer holds once optimal design is based on

the stochastic performance model. The hope is that this paper articulates a way

to rigorously approach this and other important questions in contest theory.

complicated formula to determine who is promoted. This paper is about the last step.
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2 Contests with stochastic performance

This section lays out the basic model. There is a �xed set N = f1; :::; ng of
contestants or agents. Agent i takes costly action ai 2 R+. The action in�uences
the distribution of the agent�s performance, qi. The distribution function is writ-

ten Gi(qijai). It is assumed to be atomless whenever ai > 0, in which case it

has density gi(qijai) > 0 and support [qi; qi], which may or may not be bounded
above or below. Note that the support is the same for all strictly positive actions.

If ai = 0, the possibility that the distribution is degenerate at qi = qi is allowed.

Given actions, agents�performances are statistically independent.

In an unbiased contest, the agent with the performance of the highest quality

wins. Thus, if ai > 0, agent i�s probability of winning is

pi(a1; :::; an) =

Z qi

q
i

�Q
j 6=iGj(qjaj)

�
gi(qjai)dq: (3)

Note that (3) at least partly describes a CSF, with the caveat that the winning

probability is yet unspeci�ed if ai = 0. If Gi(qij0) is non-degenerate, then (3)
applies at ai = 0 as well. However, in some applications it may be assumed that

Gi(qij0) is degenerate such that qi = q
i
with probability one. In this case, ties

in performances may occur with positive probability. It is assumed that ties are

broken with a fair coin. A special case that is of interest is when Gi(qij0) is
degenerate for all agents and q

i
= q is the same across agents. Then, all agents

tie if they all take zero action. In this case, pi(0; :::; 0) = 1
n
for all i.

Agent i assigns some exogenous value vi > 0 to winning the contest. The

value of losing is zero. Costs are normalized to be linear in ai. Since costs are

increasing in ai, the action can often be interpreted as e¤ort. Agent i�s expected

payo¤ is now

Ui(a1; :::; an) = vipi(a1; :::; an)� ai:

Special cases of the model have been considered before. For example, an

all-pay auction is a contest with no noise. Here, Gi(qijai) is degenerate for all
actions, such that qi = ai with probability one. Then, the agent with the highest

action wins. In this paper, such distributions are ruled out. In Lazear and
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Rosen�s (1981) rank-order tournament, the noise is derived from an agent who

can shift the location of the distribution. Formally, qi = fi(ai) + "i, where "i is

the realization of a random variable which is independent of ai. Thus, unless the

support of "i is the entire real line, the support of qi depends on the action ai.

Again, this is ruled out in this paper.

Finally, (3) has been used in the literature to microfound (1). An early con-

tribution in this literature is Hirschleifer and Riley (1992). They propose a model

with a multiplicative production function where qi = fi(ai)"i, with "i exponen-

tially distributed with mean one. With n = 2 agents, (3) reduces to (1). The

following example allows for more agents.

Example 1 (The best-shot model): Assume that agent i�s distribution func-

tion can be written

Gi(qjai) = Hi(q)fi(ai), q 2 [qi; qi]; (4)

and therefore

gi(qjai) = fi(ai)Hi(q)fi(ai)�1hi(q), q 2 [qi; qi];

for all i 2 N , where Hi(q) is a distribution function with density hi(q). If fi(ai)
is restricted to take integer values, Gi(qijai) is the distribution of the best draw
from Hi(q) � the best-shot � out of a total of fi(ai) draws. In an innovation

contest, Hi can be interpreted as the distribution of the quality of a single idea

and fi as the number of ideas. Formally, however, there is no reason to restrict

fi to take integer values but it must be non-negative, fi(ai) � 0.
The setting is inspired by Fullerton and McAfee (1999). However, they and

the ensuing literature assume that Hi(q) = H(q) for all i 2 N . In words, all
agents have ideas that are equally good ex ante but some agents may have more

ideas than others. It is straightforward to show that using (4) in (3) produces (1).

This is intuitive. After all, agent i makes fi(ai) draws from H(�) out of a total
of
P

i2N fj(aj) draws. Each draw has an equal chance of being the highest draw,

thus yielding the CSF in (1). Note that if fi(0) = 0 then Gi(qij0) is degenerate
with all mass at qi = qi = q. Thus, using the speci�ed tie-breaking rule, agents

win with equal probability if all actions are zero. Since fi(ai) can be thought of

as the number of ideas, it is often sensible to assume that fi(ai) is increasing and

concave, or f 0i(ai) > 0 � f 00i (ai). Then, pi(a1; :::; an) is concave in ai.
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Things are more complicated if the Hi�s are allowed to be heterogenous. For

instance, if Hi �rst-order stochastically dominates Hj for all j 6= i then (1) is

only a lower bound on agent i�s probability of winning. The reason is that agent

i�s ideas are better ex ante than his rivals�ideas. Such a setting thus cannot be

analyzed using (1), but it turns out to be amenable to the approach suggested

in this paper. Henceforth, the �best-shot model� refers to (4) with potentially

heterogenous Hi�s. The special case in which all Hi�s are identical is referred to

as the Fullerton and McAfee (1999) model. �

Returning to the general model, note that (3) requires only that it can be

identi�ed whose performance is the highest. In this paper, however, it is assumed

that all performances are observed. A biased contest is then one in which the

winner is not necessarily the agent with the highest performance.

3 Contests as moral hazard problems

A contest elicits e¤ort from agents. Hence, designing a contest is at heart a moral

hazard problem. This preliminary section begins by �rst describing the manner

in which the contest can be manipulated and compares it to other approaches

in the literature. Some important technical assumptions are also introduced and

discussed. Finally, the designer�s objective function is discussed.

3.1 Assignment rules

One way of viewing (2) is as a family of black-box CSFs that the designer can

choose from. The choice to focus on this family is arbitrary but it is unclear

what the �most reasonable�family is. This is a fundamental problem with any

black-box approach: Biasing the contest is akin to �shaking�the black box, but

it is not obvious how to model the consequences of this intervention.

On the other hand, the underlying stochastic-performance structure means

that one can now think of the CSF not as a black box but rather, borrowing a

term from computer engineering, as a �white box�because the internal workings

of the system are known. The hard-wired components are described by Gi(qijai),
on top of which is a program that identi�es the winner as being the top performer.
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The white-box approach provides clear direction for how to approach contest

design. Optimal design boils down to asking how the box can best be �hacked�,

i.e. how to reprogram the mapping from performances to outcomes.

Thus, the designer constructs n functions, Pi(q), i 2 N , that describe the
winning probability of each agent, contingent on performances. Here, q =

(q1; q2; :::; qn) denotes the pro�le of performances. The only constraints are that

Pi(q) � 0, i 2 N , and
P
Pi(q) � 1. Together, Pi(q), i 2 N , de�ne an �as-

signment rule.� It is often convenient to write Pi(q) as Pi(qi;q�i), where q�i
denotes the vector of performances of agent i�s rivals. It is explicitly assumed

that the designer can credibly and fully commit to any feasible assignment rule.

In comparison, it is not always clear what is implicitly or explicitly assumed in

this regard in work that relies on (2). How realistic the assumption is depends

on the application. Che and Gale (2003) consider a research contest in which the

quality of the innovation is not veri�able. Then, the designer can obviously not

commit to any arbitrary assignment rule.

Let a�i denote the vector of actions by agent i�s rivals. Given a�i, agent i�s

expected utility from action ai is

Ui(ai; a�i) = vi

Z �Z
Pi(qi;q�i)gi(qijai)dqi

�Y
j 6=i

gj(qjjaj)dq�i � ai; (5)

since performances are statistically independent. For a pro�le of actions a =

(a1; a2; :::; an) to be implementable, it must of course constitute a Nash Equilib-

rium of the contest game. The point is that this equilibrium can be manipulated

by making changes to the assignment rule. Attention is restricted to pure strategy

implementation throughout.

3.2 Related contracting problems

Contest design shares some similarities with contracting in team moral hazard

problems, à la Holmström (1982). In the latter, the principal designs wage sched-

ules, wi(q), with complete freedom. In contest design as de�ned here, there are

no monetary transfers (at least not beyond the prize, which may or may not be

monetary). Nevertheless, agent i cares about viPi(q) in a contest in much the
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same way as he cares about wi(q) in Holmström�s (1982) setting. The constraint

that Pi(q) � 0 is akin to a limited liability constraint. The constraint thatP
Pi(q) � 1 is similar to a budget constraint. Thus, there is less design �exibil-

ity in contests than in classic team moral hazard problems. This has important

consequences. In Holmström (1982), wi(q) depends only on qi if all signals are

independent, as is the case in the present model. Such wage schedules may of

course not be feasible if there is a budget constraint. It is then necessary to

make pay contingent on the performance of other agents as well to make sure the

budget is not broken. For similar reasons of feasibility it is generally optimal to

let Pi(q) depend on the entire pro�le q in the contest setting.

Rank-order tournaments as in Lazear and Rosen (1981) are essentially team

moral hazard problems where wage schedules are restricted to take very partic-

ular functional forms. In particular, wages can take one of n values and they

must be allocated in order of agents�performances. Thus, rank-order tourna-

ments can also be viewed as special kinds of contests with n prizes in which

the assignment rule is restricted but where the values of the prizes are design

instruments. Lazear and Rosen (1981) consider an extension to two-agent tour-

naments in which handicapping is used to determine the winner. This takes the

speci�c form of an additive bias applied to performances and so this still places

restrictions on Pi(q). See also Fain (2009).

3.3 The contest environment

Unless explicitly mentioned, no functional form is imposed on the distributions

Gi(qijai). Thus, the aim is to analyze contests in some generality. However, there
are technical road blocks. In this �rst paper, the idea is to make use of the simplest

possible techniques in order to focus on conceptual and economic insights. Thus,

the analysis relies on the standard �rst-order approach known from classic moral

hazard problems. The validity of this approach places technical restrictions on

Gi(qijai) and thereby limits the set of Gi(qijai) for which the optimal design is
characterized.6 It is, however, important to note that this is a purely technical

6For instance, the assumption that the support of qi is independent of the action for ai > 0
simpli�es the incentive compatibility constraint and is standard in the moral hazard literature.
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problem. This is in contrast to the deeper conceptual limitations that are implicit

in restricting attention to Gi(qijai) that yield (1).
It will be assumed from now on that actions are continuous and that gi(qijai)

is di¤erentiable with respect to ai when ai > 0. Agent i�s likelihood-ratio,

Li(qijai) =
1

gi(qijai)
@gi(qijai)
@ai

;

plays an important role. A common assumption is that Li(qijai) is weakly increas-
ing in qi. For expositional simplicity, this paper assumes that Li(qijai) is strictly
increasing in qi. This will be referred to as the monotone likelihood-ratio property

(MLRP). The MLRP implies that higher actions make lower performances less

likely. Thus, Gi(qijai) is strictly decreasing in ai whenever qi is interior. Similarly,
agent i�s expected performance, E[qijai], is strictly increasing in ai.
In the standard contracting literature, the role of the MLRP is to ensure that

wage schedules are monotonic in signals. It plays a similar role here. Agent i�s

assignment Pi(qi;q�i) is said to be monotonic if it is non-decreasing in qi. While

agent i�s expected utility clearly depends on the properties of Pi(qi;q�i), a stan-

dard technique can be applied whenever Pi(qi;q�i) is monotonic in equilibrium.

Speci�cally, Rogerson (1985) combines the MLRP with a convexity of the distri-

bution function condition (CDFC) that assumes that Gi(qijai) is convex in ai for
all qi. The CDFC implies that the term in the parenthesis in (5) is concave in ai
for any monotonic Pi(qi;q�i); the easiest way to see this is by using integration by

parts. Thus, agent i�s expected utility is concave in ai, given a�i. Consequently,

the �rst-order condition identi�es a best response.

The best-shot model in (4) has the MLRP whenever f 0i(ai) > 0 and it likewise

satis�es the CDFC whenever f 00i (ai) � 0. Indeed, Rogerson�s (1985) leading

example is precisely a special case of (4). Thus, the current paper concentrates

on environments where the MLRP and the CDFC hold. It can be veri�ed that

the approach extends to Hirschleifer and Riley�s (1992) two-agent model when

fi(ai) = ai, despite the fact that such a model violates the CDFC.
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3.4 Objective and welfare functions

Returning to contest design, the optimal assignment rule generally depends on the

designer�s objective function. There are at least two conceptually very distinct

ways to think about objective functions. First, the designer may care directly

about actions. Perhaps in part for historical reasons, this is the prevalent assump-

tion in contest theory, either implicitly or explicitly. Recall that Tullock (1980)

examined rent-seeking contests. Here, e¤ort is pure waste and it thus makes

sense from a welfare perspective to understand the size of the loss, measured byP
i2N ai. However, many applications of (1) since Tullock consider settings where

higher actions bene�t society or possibly some contest designer. Hence, it is com-

mon to measure welfare by
P

i2N ai and, when the contest design is endogenous,

to seek to maximize this. More generally, the welfare or objective function can

be captured by a bene�t function B(a) that depends only on the action pro�le.

Second, the designer may care directly only about performances. Then, ac-

tions are important only via their impact on performances. For instance, con-

sider a promotion contests among salesmen. Here, the employer is presumably

not directly interested in the salesmens�e¤orts,
P

i2N ai, but rather in the ex-

pected total volume of sales, E[
P

i2N qija]. More generally, the designer has some
Bernoulli utility function �(q) that depends only on performances. Expected

utility is then B(a) = E[�(q)ja], which is again a function of the action pro�le a.
In either case, the expected utility function is written as B(a). The motivation

is di¤erent however, and it is important conceptually to point out that
P

i2N ai

and E[
P

i2N qija] may generally be quite di¤erent. For instance, in the Fullerton
and McAfee (1999) model, E[

P
i2N qija] depends on H(q). If H(q) = q�, � > 0,

q 2 [0; 1], then
E[
P

i2N qija] =
P

i2N
�fi(ai)

1 + �fi(ai)
: (6)

If the designer cares about performances rather than actions per se, then (6) is

evidently of much more interest than
P

i2N ai. Note that the two are typically

not maximized at the same action pro�le.

However, assuming that the designer�s expected utility depends only on a

is not without loss of generality. The reason is that such utility functions are

assignment independent : The designer�s utility directly or indirectly depends
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only on actions but it is independent of the assignment rule itself. This is not

the case in an innovation contest if the designer is restricted to implementing the

winning project, even if one of the losing contestants has a better project. Then,

the expected quality of the winning project is

Z  X
i2N

Pi(q)qi

!Y
i2N

gi(qijai)dq;

which evidently depends on the assignment rule directly.

Thus, there are a large number of potentially interesting objective function.

Which objective function applies depends on the application. This paper focuses

on objective functions that are assignment independent. In many applications,

it is reasonable to assume that B(a) is strictly increasing in all arguments. An

objective function that is assignment independent and strictly increasing will

be said to satisfy Assignment Independence and Monotonicity, abbreviated AIM.

Not only is this a reasonably large class and a good place to start, it also turns out

that optimal contest design is qualitatively similar for all such objective functions.

If B(a) takes the form B(a) = E[�(q)ja], then the MLRP implies AIM if � is

strictly increasing in each argument. The assumption that � is strictly increasing

is su¢ cient but not necessary. Assume that all agents�performances share the

same support. Then, �(q) = maxfq1; q2; ::; qng also gives an objective function
that satis�es AIM. This Bernoulli utility function applies when the designer only

cares about the best performance, even though this may or may not equal the

winner�s performance. For instance, a �rm may pursue the best product design

proposed by a disparate group of in-house developers, yet may at the same time

chose to promote a developer whose own design was inferior to handle the product

launch. Likewise, if no distribution is degenerate even at the zero action, then

�(q) = minfq1; q2; ::; qng also implies AIM.7 This objective function may apply
in a team product design problem where the quality of the worst component

determines the overall value or longevity of the product.

7The case where distributions are degenerate at the zero action is not too di¤erent. Here, it
can never be optimal to induce ai = 0 for any i 2 N given that �(q) = minfq1; q2; ::; qng. Then,
AIM is satis�ed on the subset of relevant actions, i.e. those for which ai > 0 for all 2 i 2 N .
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4 Optimal contest design

Grossman and Hart (1983) propose a two-step procedure to the classic moral

hazard problem. The �rst step derives the cost-minimizing way of implementing

any given action. The second step then solves for the optimal action to implement,

taking into account both implementation costs and the bene�ts to the principal.

The procedure needs modi�cation in the current setting. Assume that the

objective function satis�es AIM. Then, given the prize is �xed and exogenous,

implementation costs are invariant to the action pro�le and independent of the

assignment rule.8,9 The problem is instead that the restriction to using a contest

implies that not all action pro�les can be implemented. Thus, the natural �rst

step is to ask which action pro�les can be implemented. The second step then

implements the action pro�le that is most bene�cial to the designer. If the

objective function satis�es AIM, the optimal action must be on the frontier of

the implementable set of actions.

This section breaks the analysis of assignment rules into a few parts. First,

the �feasible set� of actions that can be elicited from any individual agent is

characterized. For any implementable action, there are generally a multitude of

assignment rules that are incentive compatible. However, the Pi(q) that induces

the highest possible action from agent i is unique.

The second part considers contests in which the prize must be allocated and

concentrates on action pro�les where ai > 0 for all i. Again, incentive compatible

assignment rules are not unique for most implementable action pro�les. However,

for any action pro�le that is along the frontier of the feasible set, there is in fact

a unique incentive compatible contest design. The structure of the assignment

rule is similar for all pro�les along the frontier. The implication is that as long as

the objective function satis�es AIM, the fundamental structure of the optimally

designed contest is uniquely characterized.

The third part considers contests in which some agents may be inactive and

contests in which it is possible to ration the prize. Once again, all objective func-

tions satisfying AIM yield assignment rules with the same fundamental structure.

8Even though the prize is �xed it may be valued di¤erently by di¤erent agents, or vi 6= vj .
9In some applications it may be costly to allocate the prize. The designer may thus decide

to not assign the prize. The objective function does not satisfy AIM in such cases.
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4.1 Maximal individual e¤ort

Given (5), the marginal return to a small increase in ai is

@Ui(ai; a�i)

@ai
= vi

Z �Z
Pi(qi;q�i)Li(qijai)gi(qijai)dqi

�Y
j 6=i

gj(qjjaj)dq�i�1: (7)

Since the expected value of Li(qijai) is zero, it follows from the MLRP that

Li(qijai) is strictly negative for small qi and strictly positive for large qi. It is
clear that (7) is maximized if the prize is assigned to agent i if and only if Li(qijai)
is positive. When Li(qijai) is positive, a marginal increase in ai makes it more
likely that a performance close to qi is realized. There is no better carrot than

promising the agent the prize for such performances and no better stick than to

deny him the prize for performances that become less likely if his action increases.

Let bqi(ai) denote the unique value of qi for which Li(qijai) = 0. Now �x some
target action, ati, that the designer may wish to implement. When evaluated at

ai = ati, (7) is thus maximized with an assignment rule that has the property

that

Pi(qi;q�i) =

(
1 if qi � bqi(ati)
0 otherwise

: (8)

Any assignment rule that takes a form such as that in (8) will be said to be a

threshold rule for agent i. In a promotion contest, for example, agent i might be

the �heir apparent�who is destined to win the promotion unless his performance

is a conspicuous failure. This puts maximal pressure on the agent to ensure that

his performance lives up to expectations.

Note that the threshold rule is independent of q�i. Hence, agent i�s incentives

are the same regardless of the actions taken by other agents. Likewise, it leaves

unspeci�ed to whom the prize is assigned if agent i fails to meet the threshold.

This is of course irrelevant from agent i�s perspective, but it does potentially

impact the equilibrium actions of other agents.

The threshold rule in (8) is useful because by construction it maximizes the

�rst derivative in (7) when evaluated at ai = ati. Hence, if the threshold rule leads

(7) to take a negative value, then there is no assignment rule that can feasible

satisfy the �rst-order condition. Then, the target action ati simply cannot be
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implemented. Hence, it is necessary for implementability that (7) is non-negative

at ati when the threshold rule is used.

Given (8), agent i�s expected utility from some action ai is

vi(1�Gi(bqi(ati)jai))� ai: (9)

Hence, following the above argument, implementability necessitates that the

derivative with respect to ai is non-negative when evaluated at ai = ati, or

�@Gi(bqi(ati)jai)
@ai jai=ati

� 1

vi
: (10)

As noted earlier, the MLRP implies that the left-hand side is strictly positive.

Lemma 1 Given the MLRP and some interior target ati, there exists an assign-
ment rule that satis�es agent i�s �rst-order condition at ai = ati if and only if (10)

is satis�ed. Moreover, the Pi(qi;q�i) function that satis�es agent i�s �rst-order

condition is (essentially) unique if and only if (10) is binding.10

Proof. See the Appendix.
Let ai denote the highest possible value of ati for which (10) holds, assuming

such a value exists. By Lemma 1, ai is a candidate for the highest possible action

that agent i can be induced to take. From now on, it will be assumed that ai
exists and is strictly positive. This is without loss of generality as otherwise the

set of agents can be rede�ned to contain only those agents that can be induced

to take a positive action.

Lemma 1 relies on the �rst-order condition. However, since threshold rules

are monotonic, the �rst-order condition is su¢ cient when the CDFC holds.

Proposition 1 Assume Gi satis�es the MLRP and CDFC. Then, any interior
ati for which (10) holds can be implemented. In particular, ai is implementable.

Proof. The proof of Lemma 1 describes a threshold rule that satis�es the �rst-
order condition at ai = ati. By concavity, the agent has no incentive to deviate

from this action.
10Here, Pi(qi;q�i) is �essentially unique�because changes on a set of performances of mea-

sure zero are irrelevant.
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4.2 Contests with no inactive agents and no rationing

The remainder of the paper considers all agents together, as is required for optimal

contest design. In general, it may be optimal to threaten to not allocate the prize.

However, such rationing is rarely considered or allowed in the current literature

on contest design. Thus, attention is for now restricted to the optimal design of

contests subject to the restriction that the prize must be allocated. Formally,

P
i2N Pi(q) = 1:

The assumption is realistic in many applications. For instance, a CEO must be

found eventually.

Let AN denote the set of action pro�les a that can be implemented subject
to the no-rationing constraint. Given the MLRP and the CDFC, this contains

action pro�les where ai = ai for some i 2 N and aj = 0 for all j 6= i. To

implement this, apply the threshold rule to agent i and if agent i is unsuccessful

then give the prize at random to one of the other agents.

This subsection describes the portion of the frontier where all agents are

active, or ai > 0 for all i. It turns out that allowing for inactive agents, or ai = 0

for some i, is similar to allowing for rationing. These possibilities are taken up

in the next subsection.

Fix some agent j and decompose an interior action pro�le a into (aj; a�j). If

a is on the frontier of AN , then it must necessarily hold that no higher value of aj
can be implemented given a�j. Thus, the question is: Given a �xed a�j, what is

the highest implementable value of aj? To answer this, recall that the �rst-order

conditions are necessary for all agents other than agent j since a�j is interior.

Without loss of generality let j = 1. Extending the approach that gave Lemma

1 (where a�1 was essentially ignored), �x (a1; a�1) and consider the problem

max
fPi(q)2[0;1]gni=1

@U1(a1; a�1)

@a1
(11)

st
@Ui(ai; a�i)

@ai
= 0 i 2 Nnf1gP

i2N Pi(q) = 1 for all q:
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Let V (a1; a�1) denote the maximum-value function of this problem. Note

that V (a1; a�1) plays the same role as (10) does in Lemma 1 and Proposition 1.

If V (a1; a�1) < 0 then it is impossible to construct a contest that satis�es agent

1�s �rst-order condition and the action pro�le (a1; a�1) cannot be implemented.11

Given the MLRP and the CDFC are satis�ed as in Proposition 1, it will be shown

that there is an essentially unique assignment rule that implements the action

pro�le if V (a1; a�1) = 0.

Let �i denote the multiplier to the incentive constraint for agent i, i 2 Nnf1g.
De�ne �1 = 1. It is convenient to write the last constraint as�P

i2N Pi(q)� 1
�Q

i2N gi(qijai) = 0:

Let �(q) denote the multiplier to this constraint when the performance pro�le is

q. The Lagrangian can then be written as

L =
P

i2N �i
@Ui(ai; a�i)

@ai
+

Z
�(q)

�P
i2N Pi(q)� 1

�Q
i2N gi(qijai)dq:

=

Z �P
i2N Pi(qi;q�i) [�iviLi(qijai) + �(q)]� �(q)

�Q
i2N gi(qijai)dq�

P
i2N �i

Maximizing L pointwise for any given q by appropriately choosing the assignment
rule is equivalent to maximizing

P
i2N Pi(qi;q�i) [�iviLi(qijai) + �(q)] (12)

subject to the feasibility constraints. This is done by letting Pi(q) = 1 if

�iviLi(qijai) > max
j 6=i
f�jvjLj(qjjaj)g (13)

and Pi(q) = 0 if the inequality is reversed. It is as if agent i earns a score of

�iviLi(qijai) and the agent with the highest score wins. Ties occur with proba-
bility zero and it is irrelevant how they are broken. This rule is fairly intuitive.

As discussed in the previous subsection, the power of the incentives facing agent

11Similarly, if the problem has no solution then it is impossible to simultaneously satisfy the
�rst-order conditions of agents 2; :::; n. Thus, the action pro�le cannot be implemented.
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i are determined by the size of viLi(qijai) when he is assigned the prize. Hence,
(13) describes how to optimally balance incentives across agents. Note that as

�j ! 0 for all j 6= i, the assignment rule converges to a threshold rule for agent
i, such that he wins if and only if his likelihood-ratio is positive.

Given the MLRP, a standard argument shows that �i > 0. Then, agent i

is more likely to win the higher qi is. In other words, the assignment rule is

monotonic. The CDFC then implies that agent i�s utility is concave in his action.

Proposition 2 Assume that Gi satis�es the MLRP and the CDFC for all i 2 N ,
and assume that the prize must be allocated. Fix an action pro�le a in which all

agents are active. If a is on the frontier of AN , then there is an essentially unique
assignment rule that implements it. This assignment rule is described by (13),

where �i 2 (0;1) are endogenously determined constants, i 2 N .

Proof. See the Appendix.
If the objective function satis�es AIM then the optimal action to implement

must be on the frontier of AN . The frontier, however, consists of action pro�les
where all agents are active and other action pro�les where only a subset are

active. As long as the solution entails only active agents then the optimal contest

design must be given by the rule described in (13). Note that this structure is

independent of the exact functional form of the objective function B(a). Action

pro�les with inactive agents are considered in the next section. This leads to a

minor and fairly straightforward modi�cation of (13).

Conversely, imagine that the contest designer implements an action pro�le in

which all agents are active but with an assignment rule that does not take the

form in (13). Then, the action pro�le is not on the frontier of AN , since such
action pro�les can only be implemented using (13). In this case, then, the contest

designer does not have an objective function that satis�es AIM.

4.3 Inactive agents and rationing

There are many di¤erent assignment rules that induce an agent to be inactive.

For instance, any rule in which Pi(qi;q�i) is independent of qi induces ai = 0.

Inducing someone to be inactive is easy. Hence, there is generally no unique

assignment rule that implements an action pro�le with inactive agents.
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However, an alternative way of thinking of the problem is to just restrict

attention to the active agents and ignore the existence of the inactive ones. In

other words, delete from the performance pro�le q all the performances of the

inactive agents. The assignment rule may then be unique as a function of the

performances of the active agents.12 If none of the active agents are assigned

the prize, then it is simply given away to one of the inactive agents at random.

The inactive agents can not in�uence the assignment and so they indeed have no

incentive to become active.

Let N denote the subset of active agents in the population N of agents.

Winning probabilities are not restricted to sum to one among the agents in N .
With some abuse of notation, a and q now denote the action pro�le and the

performance pro�le, respectively, of the active agents. By de�nition ai > 0 for

all i 2 N since N describes the active agents. Likewise, ai = 0 if i =2 N .
The problem of selecting the optimal set of active contestants is in the back-

ground. It is ignored for now but taken up again later. The primary focus for

now remains more narrowly on identifying a robust structure of optimal contest.

Adding the possibility of rationing is similar to adding one or more extra

agents that are inactive in equilibrium. If the prize is withheld from the active

agents, it can just be dumped with an inactive agent. Thus, even if rationing may

appear hard to commit to, it is possible in a contest with n+1 agents to reproduce

the optimal action pro�le in an n agent contest that allows for rationing. From

the point of view of the original n agents, the threat of giving the prize to the

additional agent is equivalent to threaten to withhold the prize entirely. Hence,

there are two ways to interpret a contest with a set N of active agents where

winning probabilities are not restricted to sum to one: (1) The prize must be

allocated but there are inactive agents that occasionally receive the prize, or (2)

the designer has the power to ration or withhold the prize. Let ARN denote the

set of action pro�les that can be induced among the set N of active agents when

rationing is allowed. Again, the frontier of this set is described.

It is straightforward to modify Proposition 2 to allow for rationing. In (11) �

12This approach is without loss of generality. Given qi, agent i only cares about the expec-
tation of Pi(qi;q�i) over q�i. The set of performances of the inactive agents can then always
be replaced by some randomization device.
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assuming for the sake of argument that agent 1 is active �the last equality con-

straint must be replaced by an inequality constraint since winning probabilities

need not sum to one, and N replaces N . This does not materially change the

expression in (12). Hence, if the prize is assigned, it is once again assigned to the

agent with the highest �iviLi(qijai).

Proposition 3 Assume that Gi satis�es the MLRP and the CDFC for all i 2 N .
Assume that the prize need not be assigned with probability one among N . If a
given action pro�le a is on the frontier of ARN , then there is an essentially unique
assignment rule that implements it. Here, Pi(q) = 1 if

�iviLi(qijai) > maxf0; max
j 6=Nnfig

f�jvjLj(qjjaj)gg (14)

and Pi(q) = 0 if the inequality is reversed, where �i 2 (0;1) are endogenously
determined constants, i 2 N .

Proof. See the Appendix
Proposition 3 combines Propositions 1 and 2. Using the logic that lead to the

threshold rule used in Lemma 1 and Proposition 1, assigning the prize when the

likelihood-ratio is negative weakens incentives. Thus, the prize must be withheld

in such cases. Moreover, to balance incentives across agents, Proposition 2 reveals

how scores should be compared. The rule in (14) have all these features.

To illustrate, consider the special case where N = f1; 2g and N = f1g. Then,
the frontier of ARN is simply a1; (14) is just the optimal threshold rule from

Lemma 1 and Proposition 1. This can be thought of as describing the action

pro�le (a1; a2) = (a1; 0), where agent 2 is used as the threat to enforce rationing.

More generally, assume that N is a proper subset of N , i.e. that there is one

or more inactive agents. Compare the frontier of ARN with the part of the frontier
of AN where all agents are active. The latter describes an action pro�le where
ai > 0 for all i 2 N . The former speci�es an action pro�le of the set N of active

agents, but it is understood that ai = 0 for all i 2 NnN at the same time. Thus,

the frontier of ARN is the part of the frontier of AN where a subset of agents are
inactive. In this way Proposition 2 and 3 together describe the entire frontier of

A. Once again, the structure of the optimal contest is remarkably robust. That
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is, the assignment rule is determined by a comparison of scaled likelihood-ratios

for all objective functions that satisfy AIM.

4.4 Selecting the active agents

Determining the optimal set of active agents, N , is generally complicated. First,
agents may have di¤erent distribution functions. To rule this out, assume now

that Gi(qijai) = G(qijai) for all i 2 N . Second, the designer may care more about
some agents compared to other agents. To eliminate this complication, assume

that the bene�t function is anonymous. Under these assumptions, the active

agents are those with the highest valuations. That is, if agent i is induced to be

active and agent j is induced to be inactive, it must be the case that vi � vj.
The reason is simple. Suppose to the contrary that vi < vj but that agent i

is active and agent j is not. Let agent i play the role of agent 1 in the problem

(11). If ai is on the boundary of ARN , then the objective function in (11) is zero.
However, replacing agent i with agent j leads to a larger objective functions. This

implies that agent j can be induced to take a higher action than ai, even while

keeping all other agents at the same level of e¤ort.

This observation is intuitive. Simply put, it is easier to induce high actions

from agents who value the prize very highly. In fact, Fu and Wu (2020) obtain

the same result in their model based on (2). However, it should be contrasted to

the in�uential �exclusion principle�due to Baye, Kovenock, and de Vries (1993).

In their model the CSF is exogenously given as an all-pay auction CSF. In that

setting, it may be optimal to exclude agents with high valuations. In the all-pay

auction, such agents deter other agents from exerting much, or any, e¤ort. In the

current model, in contrast, the CSF is endogenous.

5 The best-shot model revisited

This section utilizes the best-shot model to illustrate some of the main results.

This also makes it possible to return to the issue of whether (2) and the conclu-

sions stemming from it are compatible with the stochastic performance model.
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5.1 Optimal assignment rules

From (13), the likelihood-ratios play a crucial role in optimal contest design.

Generally speaking, likelihood-ratios are non-linear functions and the optimal as-

signment rule is therefore typically a complicated function of performance levels.

In the best-shot model, for any action ai > 0,

Li(qijai) =
f 0i(ai)

fi(ai)
+ f 0i(ai) lnHi(qi):

Note that the best-shot model has the special property that Li(qijai) ! �1 as

q ! q
i
. Therefore, (13) and (14) imply that any agent whose performance is q

i

wins with probability zero when an action pro�le along the frontier of AN or ARN
is implemented.

To better understand the optimal assignment rule along the frontier of AN or
ARN , it is necessary to have a closer look at the adjusted scores. If the equilibrium
action is a�i then agent i�s adjusted score is

si(qi) = �iviLi(qija�i )
= � i (1 + lnGi(qija�i )) ; (15)

where

� i = �ivi
f 0i(a

�
i )

fi(a�i )
> 0:

Hence, the optimal assignment rule can be implemented as follows. First, qi is

translated into the quantile where it sits in the equilibrium distribution Gi(qija�i ).
This intermediate score then undergoes a monotonic transformation before being

multiplied by an endogenous and identity-dependent constant, � i. The winner is

the agent with the highest �nal score.

The score is a non-linear function of performance. This is a general property

that extends beyond the best-shot model. Thus, it is generally not su¢ cient to

compare a¢ ne transformations of performances.

Returning to the best-shot model, note that if agents i and j perform equally

well given what is expected of them �i.e. they perform at the same quantiles,

or Gi(qija�i ) = Gj(qjja�j) � then agent i beats agent j if � i > � j. Hence, in
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equilibrium, the ex ante winning probabilities are ordered the same way as the

� i�s. In this sense, � i is a measure of how favorable the contest is to agent i.

Given a vector � that lists all � i�s for the active agents, i 2 N , it is in principle
possible to derive the probability that agent i wins for any given action pro�le

a. In other words, the endogenous CSF can be characterized. To illustrate, the

CSF for the least favored agent is derived next, under the assumptions that all

agents are active and that the prize must be allocated. These assumptions are

made to make the comparison with (2) easier.

Proposition 4 Consider the best-shot model with f 0j(aj) > 0 � f 00j (aj) for all

j 2 N and �x an action pro�le a� on the frontier of AN in which all agents are
active, or a�j > 0 for all j 2 N . If � i � � j for all j 2 N , then agent i wins with
probability

bpi(aj� ) =
0@Q

j2N e
(�i��j)fj(aj)

�jfj(a
�
j
)

1A fi(ai)P
j2N

� ifi(a�i )
�jfj(a�j )

fj(aj)
; (16)

for any action pro�le where ai > 0.

Proof. See the Appendix.
The last term in (16) is similar to (2) when only handicaps are used. However,

since � i � � j for all j 2 N , the �rst term is less than one and agent i thus wins

less often than what (2) would suggest. As a consistency check, note that if

� i = � j for all j 2 N then bpi(a�j� ) = 1
n
and all agents win with equal probability

in equilibrium.

Importantly, the �rst term in (16) depends on the action pro�le. Thus, (16)

is not a ratio-form or generalized-lottery CSF (except in the special case where

� i = � j for all j 2 N). Applying Proposition 4 to the Fullerton and McAfee
(1999) model implies that even if the unbiased contest is a generalized lottery

contest, this need no longer hold when the contest design is endogenous.

5.2 Optimal action pro�les

The designer can always transform qi into the quantile eqi = Hi(qi) and use this
as the basis for contest design. Given agent i�s action, the distribution of eqi
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is eqfi(ai)i , eqi 2 [0; 1], independently of what Hi(qi) is. It follows that the set of
implementable action pro�les is independent of the distributions of ideas. How-

ever, it is important to note that the optimal action pro�le to implement may

be sensitive to Hi(qi) when the designer has an objective function of the form

B(a) = E[�(q)ja]. The reason is that the expected value generally speaking
depends on the distribution of performances.

A natural place to begin is by utilizing the structure in the best-shot model to

more succinctly characterize the highest possible implementable action of agent

i, ai. This is merely an application of Lemma 1 and Proposition 1.

Corollary 1 Assume Gi takes the form in (4) with fi(0) = 0 and f 0i(�) > 0 �
f 00i (�). Let ai denote the unique solution to

fi(ai)

f 0i(ai)
=
vi
e
. (17)

Then, any action no greater than ai can be implemented by appropriately design-

ing the assignment rule.

Proof. See the Appendix.
The assumption that fi(0) = 0 is made only to ensure that (17) has a solution.

If fi(0)
f 0(0) is large relative to vi, then the agent�s productivity at ai = 0 is already

large relative to his marginal productivity and to his valuation of the prize. In

this case, it is impossible to incentivize the agent to become active in the contest.

To illustrate, consider a symmetric version of Fullerton and McAfee�s (1999)

model with fi(ai) = f(ai) for all i 2 N and assume that f(0) = 0. Compare (17)

to the possible outcomes of a model that assumes that the CSF takes the form in

(2). In such a model, it follows from Fu and Wu (2020) that ai can be no larger

than the solution to
f(a0i)

f 0(a0i)
=
vi
4
:

By concavity of f , a0i < ai.

In Fullerton and McAfee�s (1999) model, an unbiased contest is a special case

of (2) and so it follows that actions in the Nash Equilibrium of the unbiased

contest must be bounded above by a0i for all i 2 N . For instance, if f(ai) = ai
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then ai = vi
e
whereas a0i =

vi
4
. Here, ai is 47% larger than a0i. This provides

some illustration of the potential gains from biasing the contest; it is possible to

induce at least one chosen agent to work considerably harder than in the unbiased

contest. The 47% is a conservative estimate since a0i is itself an upper bound.

In fact, the set of implementable actions in Fu and Wu (2020) is a subset of

AN . The reason is as follows. Fu and Wu (2020) show that the frontier of the set
of actions that can be implemented in their setting requires zero head starts.13

Thus, (2) reduces to bpi(a) = bifi(ai)Pn
j=1 bjfj(aj)

:

However, it can easily be veri�ed that such a CSF can be feasibly reproduced in

the Fullerton and McAfee (1999) model by giving each agent i an adjusted score

of the form

sFWi (qi) = �i lnGi(qija�i ); (18)

where a�i is the equilibrium action. Thus, anything that can be implemented

using bpi(a) can also be implemented in the current model by picking a specialized
scoring function. Since the current approach allows more action pro�les to be

implemented, it should be expected that the optimal action pro�le generally di¤er

in the two approaches.

In their setting, Fu and Wu (2020) show that a0i is attained only if the hand-

icaps are chosen such that agent i wins with probability 1
2
in equilibrium. This

occurs when �1 = �2. Thus, in contests with n = 2 agents and with an objective

function that satis�es AIM, it is optimal to calibrate the handicaps to create

a perfectly level playing �eld. Then, each agent wins with equal probability in

equilibrium and ai = a0i for i = 1; 2. Since it is impossible to force ai higher,

B(a1; a2) is maximized. The details of B are irrelevant as long as it satis�es

AIM. However, these result do not hold when one takes the approach proposed

in the current paper.

To begin, the action pro�le (a01; a
0
2) is also on the frontier of AN when n = 2.

This action pro�le is achieved when � 1 = � 2. In this case, the intercepts in (15)

cancel out and the scores are thus ranked in the same way as (18) ranks scores

13Fu and Wu (2019b) and most of the prior literature restrict head starts to be non-negative.
However, Drugov and Ryvkin (2017) show that negative head starts may be better.
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when �1 = �2. Other action pro�les on the frontier include (a1; 0) and (0; a2).

The latter are not feasible using Fu and Wu�s (2020) approach, again because

there ai is bounded above by a0i < ai. Consider now the special case where

B(a1; a2) = !(a1)+!(a2), as is the case if the designer is interested in total e¤ort

or in total performance. Assume that ! is increasing and adopt the normalization

that !(0) = 0. Then, B(a01; a
0
2) = !(a

0
1) + !(a

0
2) whereas B(a1; 0) = !(a1). Since

a02 becomes arbitrarily small as v2 ! 0, it follows that B(a1; 0) is unambiguously

larger than B(a01; a
0
2) if v2 is small enough. Hence, the action pro�le (a

0
1; a

0
2)

cannot generically be optimal. Similarly, the optimal action pro�le is sensitive to

the properties of !.

Since (a01; a
0
2) is generally not the optimal action pro�le, it follows that � 1

and � 2 are generally di¤erent. By Proposition 4, the optimal CSF is therefore

not a generalized lottery CSF. Likewise, the two agents do not win with the

same probability ex ante. Indeed, the optimal design and the resulting winning

probabilities are sensitive to the objective function.

6 Discussion

This section discusses technical aspects of the model. First, it is noted that the

distributions functions play dual roles in the stochastic performance framework.

The implications of this observation are discussed. Technical extensions to the

model are then considered.

6.1 Productivity and incentives

Even in the unbiased case, the primitive Gi(qijai) plays a dual role. First, it
describes the agent�s performance or productivity, which in many applications is

of direct interest to the principal. Second, from (3), it helps shape incentives for

agent i and his rivals alike and is almost certainly of interest to the principal for

that reason as well. For instance, in the best-shot model fi(ai) both determines

the agent�s expected performance and enters the CSF in (1) directly. Thus, it is

hard to disentangle productivity and incentives for comparative statics purposes.

There is a literature that examines how changes in the sensitivity of fi(ai)

26



e¤ects the equilibrium and thereby total e¤ort, see e.g. Nti (2004) and Wang

(2010). As a comparative statics exercise this is of course interesting but, as

mentioned, in many applications it is productivity and not e¤ort that matters.

Thus, it is also important to keep in mind that the level of fi(ai) is likely to change

when the sensitivity changes. Moreover, as Gi(qijai) or fi(ai) are primitives of
the stochastic performance model, it is harder to justify thinking of changes in

their sensitivity as being a design choice. See, however, the next section for one

possible explanation.

It is also commonplace in the literature to compare the generalized lottery CSF

to the all-pay auction CSF. In the latter, the prize is awarded to the agent with

the highest action rather than the highest performance. For instance, Franke,

Leininger, Wasser (2018) compare the performance of head starts and handicaps

in the two settings. While this is again a legitimate comparative statics exercise,

it is important to note that the designer cannot freely pick between the two under

the stochastic performance premise. Again, the premise is that the action is not

observable. In particular, when Gi(qijai) is non-degenerate, there typically does
not exist an assignment rule that produces the all-pay CSF.

6.2 Richer models of stochastic performance

It has been assumed for conceptual and technical simplicity that performances

are independent. This assumption is built into existing microfoundations for

the generalized lottery CSF but there is no conceptual reason to insist on this

assumption more generally. Technically, however, the incentive compatibility

problem becomes more complicated when correlation is permitted. This technical

issue is left for future research.

Another simplifying assumption is that qi is one-dimensional. In some appli-

cations, it may be more reasonable to assume that qi is a vector. The analysis

leading to (13) and (14) still applies, meaning that the candidate for an optimal

assignment rule remains the same. To understand this, note that the likelihood-

ratio is a scalar even if performance is multi-dimensional. Hence, comparing

likelihood-ratios remain key. Checking incentive compatibility of the assignment

rule may be more complicated, however. See Conlon (2009) and Kirkegaard
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(2017) for ways of justifying the �rst-order approach with many-dimensional sig-

nals. If the likelihood-ratios are increasing along each performance dimension,

then the condition in Lemma 2 is satis�ed on an increasing set, in the sense

of Conlon (2009). If distribution functions satisfy his CISP condition, then the

�rst-order conditions are su¢ cient. The same holds if the likelihood-ratio has

more structure but the distribution functions satisfy Kirkegaard�s (2017) weaker

LOCC condition. See Jung and Kim (2015) for an alternative approach that is

founded more directly on the distribution of the likelihood-ratios.

Imagine that the vector of signals contains the part of the agent�s performance

that is of direct interest to the principal (e.g. the salesman�s volume of sales) as

well as an additional but not directly relevant signal (say the results of a customer

satisfaction survey). The extra information cannot hurt the designer and it seems

likely to be strictly bene�cial.14 Thus, there may be a link between the amount

of available information and the question of the sensitivity of the contest to the

agent�s action that was mentioned in the previous subsection.

7 Conclusion

This paper pursues a model of contests that is based on stochastic performance.

One narrow use of the model is to provide microfoundations for the popular

generalized lottery CSF when the contest is unbiased. However, it does not justify

the ways in which biases and design instruments are often modelled currently.

The stochastic performance premise implies that a CSF is little more than a

tool that takes the uncertainty about performances and summarizes it succinctly

into ex ante winning probabilities based on actions. In other words, the CSF

provides a reduced-form description of the contest but it is not itself truly a

primitive of the problem. The CSF can thus perhaps be useful in an intermediate

step in the analysis but there is no reason to be blinded by some perceived need

to specify a CSF directly or indeed to commit to one speci�c functional form.

This mirrors the view put forward in the conclusion of Skaperdas (1996) that:

14Holmström�s (1979) informativeness principle does not directly apply as there are no wages
in the current model. However, it should be expected that the availability of more information
will make it possible to implement higher actions.
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�Although helpful, axiomatizations by themselves are unlikely to set-

tle the issue of appropriateness of a CSF for any particular contest

situation.�

The present paper advocates the view that the stochastic performance model is

inherently compelling on its own. It need not be thought of merely as a tool whose

only purpose is to justify a very particular CSF by relying on special distributions

with knife-edge properties. The general model is worthy of study in its own right,

all concerns about CSFs aside.

In fact, the CSF can be sidestepped entirely. Instead, the paper designs opti-

mal contests from �rst principles by returning to the primitives of the problem,

which, taking the microfoundations seriously, are described by stochastic perfor-

mance. This yields a fundamental description of optimal assignment rules that

is remarkably robust to both the designer�s objective and the distribution of per-

formances. The resulting CSF can then in principle be derived by integrating

out the uncertainty over performances, but there appear little reason to take this

extra step. In any case, the optimal CSF is sensitive to the distribution of per-

formances. In a similar vein, starting from the primitives makes it possible to

design optimal contests for environments that even in the unbiased case do not

produce neat CSFs like the generalized lottery CSF.

In summary, a main message of the paper is that the ideal approach, whenever

possible, is to start from the primitives of the contest and to build the analysis

from the ground up. This simple message has implications beyond the setting

considered in the current paper and several new research questions present them-

selves as a result. For instance, what is the optimal design of contests with

multiple �xed prizes? Or of contests with multiple rounds? Such questions have

been considered in the literature before but seemingly not by starting from the

stochastic-performance foundation. Thus, the paper calls for more research into

the full implications of contests with stochastic performance.
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Appendix: Omitted proofs

Proof of Lemma 1. For the �rst part, it has already been noted in the main

text that the �rst-order condition at ai = ati cannot be satis�ed if (10) is violated.

Assume next that it is satis�ed. Consider a threshold rule with threshold qi = qi.

Then, the agent never wins, regardless of his performance. Hence, (7) is strictly

negative at ai = ati. By continuity, there must then exist some threshold between

q
i
and bqi(ati) for which (7) is exactly zero when evaluated at ai = ati.
For the second part, for any action for which (10) binds, the assignment rule

is essentially unique in its description of Pi(qi;q�i) because the threshold rule

maximizes (7). Thus, any assignment rule that di¤ers on a set of performances of

positive measure would fail to satisfy the agent�s �rst-order condition. In contrast,

Pi(q1; q2; :::; qn) is not unique when (10) is slack. The �rst part of this proof

already identi�es a threshold rule that implements ai. By similar reasoning, there

is another threshold rule with threshold above bqi(ati) that satis�es the �rst-order
condition. An alternative rule that can be calibrated to work is to randomize

between two thresholds, one for which (7) is strictly positive and one for which

it is strictly negative. Such thresholds exist by the assumption that (10) is slack.

Note that randomizing between two assignment rules is just a convex combination

of the two and is therefore in itself an assignment rule. Thus, there are in�nitely

many assignment rules that satisfy the �rst-order condition.

Proof of Proposition 2. Given (13), the score is non-increasing in qi if �i � 0
for any i 2 Nnf1g. In this case, Pi(q) is non-increasing in qi. By the MLRP, the
agent then has an incentive to deviate downwards. This violates the incentive

constraint in (11). Thus, �i > 0 and Pi(q) is therefore increasing in qi. Since

�1 = 1 > 0, it also holds that P1(q) is increasing in q1.

Now consider an interior action pro�le a for which V (a1; a�1) = 0. Then, the

�rst-order conditions of all the agents are satis�ed. Since the assignment rule is

monotonic, the agents�utility maximization problems are concave by the CDFC.

Hence, the assignment rule is incentive compatible for all agents. By the same

arguments as in Lemma 1 the assignment rule that implements the action pro�le

is then essentially unique and given by (13).

If V (a1; a�1) < 0 then it is impossible to design a contest that is incentive
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compatible for agent 1. For instance, it follows from Lemma 1 that V (a1; a�1) < 0

if a1 > a1, regardless of a�1. If V (a1; a�1) > 0, then by continuity there must

exist a higher a1, closer to a1, for which V (a1; a�1) = 0. Thus, if the action pro�le

is on the frontier of the set of implementable actions then V (a1; a�1) = 0 must

necessarily hold. In this case, it has just been shown that the assignment rule is

essentially unique.

Proof of Proposition 3. From (12), pointwise maximization requires that

the prize is assigned to the agent with the highest value of �iviLi(qijai) + �(q),
provided this is positive. The prize must be withheld if �iviLi(qijai) + �(q) is
negative for all i. Is it possible that the object is not assigned if �iviLi(qijai) > 0
for some i? In this case, the feasibility constraint is slack and �(q) must be zero

by complementary slackness. However, if �(q) = 0 then �iviLi(qijai) + �(q) is
strictly positive and the prize must thus be assigned. These two statements are

contradictory. Hence, the prize must be assigned whenever there is an agent with

a positive value of �iviLi(qijai).
On the other hand, imagine that �iviLi(qijai) < 0 for all i. Since the feasibility

constraint is an inequality constraint the multiplier can be signed immediately,

with �(q) � 0. Thus, �iviLi(qijai) + �(q) < 0 for all i and the prize must be

withheld. In conclusion, the prize is assigned if and only if there is an agent with

a positive value of �iviLi(qijai), and in this case it is awarded to the agent with
the highest score. This is the assignment rule described in (14).

If �i � 0 then scores are non-increasing in qi. Hence, Pi(q) is non-increasing
in qi. Given the MLRP, this violates the incentive constraint. Thus, �i > 0 for

all i 2 N=f1g, while �1 = 1 is positive by de�nition as well. Hence assignment
rules are monotonic. In the case where there are inactive agents beyond the N ,
or N=N 6= ;, their incentives to remain inactive are easily ensured. If the prize is
not assigned to any of the active agents, then simply give it to an inactive agent

at random. Such an agent can then not in�uence the probability that he wins

the prize and his unique best response is to be inactive. There are a plethora of

such rules that work. Thus, to clarify, the claim of uniqueness in the proposition

refers only to the assignments of the active agents in N . The rule in (14) is
independent of the performances of the inactive agents. The same arguments as
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in Proposition 2 concludes the proof.

Proof of Proposition 4. Agent i beats agent j if performances are such that

�iviLi(qija�i ) > �jvjLj(qjja�j), or

qj < H
�1
j

0@e(�i��j)�jfj(a
�
j
)Hi(qi)

�ifi(a
�
i )

�jfj(a
�
j
)

1A :
Note that the argument of the inverse function on the right is between zero and

one because � i � � j by assumption. Given qi, the probability of agent i beating
agent j is therefore

Hj(qj)
fj(aj) < e

(�i��j)fj(aj)
�jfj(a

�
j
) Hi(qi)

�ifi(a
�
i )

�jfj(a
�
j
)
fj(aj)

;

which obviously depends on agent j�s action, aj. Agent i must beat all rivals

in order to win. Taking the expectation over qi, his probability of winning is

therefore

bpi(aj� ) =

Z qi

q
i

Q
j 6=i

0@e(�i��j)fj(aj)�jfj(a
�
j
) Hi(qi)

�ifi(a
�
i )

�jfj(a
�
j
)
fj(aj)

1A fi(ai)Hi(qi)fi(ai)�1hi(qi)dqi
=

0@Q
j 6=i e

(�i��j)fj(aj)
�jfj(a

�
j
)

1AZ qi

q
i

fi(ai)Hi(qi)
P
j 6=i

�ifi(a
�
i )

�jfj(a
�
j
)
fj(aj)

Hi(qi)
fi(ai)�1hi(qi)dqi;

which simpli�es to (16).

Proof of Corollary 1. In the best-shot model, where bqi(ati) = H�1
�
e
� 1

fi(a
t
i
)

�
or H(bqi(ai)) = e� 1

fi(a
t
i
) , (9) is

U i(ai) = vi

�
1� e

� fi(ai)

fi(a
t
i
)

�
� ai

and (10) simpli�es to
f 0i(a

t
i)

fi(ati)
� e

vi
:
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By concavity, the left hand side is decreasing. Hence, the condition is satis�ed if

and only ati is no greater than the solution to (17). By Proposition 1, it is then

possible to implement the action.
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