{"id":9426,"date":"2021-06-21T00:04:49","date_gmt":"2021-06-21T04:04:49","guid":{"rendered":"https:\/\/www.porticomagazine.ca\/?p=9426"},"modified":"2021-06-22T15:32:10","modified_gmt":"2021-06-22T19:32:10","slug":"u-of-g-researchers-work-to-improve-cancer-treatments","status":"publish","type":"post","link":"https:\/\/porticomagazine.ca\/2021\/06\/u-of-g-researchers-work-to-improve-cancer-treatments\/","title":{"rendered":"U of G researchers work to improve cancer treatments"},"content":{"rendered":"\n
Cancer treatment may become more effective thanks to University of Guelph physicists who have developed an innovative way to accurately target radiation\u202ftherapy.<\/p>\n\n\n\n
Radiation therapy aims beams of intense energy at a tumour to kill cancer cells. But if the ultranarrow beam is aimed inaccurately, it can hit healthy cells and \u201cunderdose\u201d the target tumour.<\/p>\n\n\n\n
Led by Dr. Dennis M\u00fccher, a professor in the Department of Physics, U of G researchers have come up with a technique called a \u201chadron tumour marker\u201d to make proton radiation therapy more accurate.<\/p>\n\n\n\n
The implications of these findings for human cancer therapy are huge<\/p><\/blockquote>\n\n\n\n
They tested the technique at TRIUMF, Canada\u2019s national laboratory for nuclear and medical physics in Vancouver.<\/p>\n\n\n\n
Cancer is the leading cause of death in Canada and half of all cancer patients are treated with radiation therapy.<\/p>\n\n\n\n
Cancer radiation therapy using ions, including charged particles such as protons, has become more widespread because it can target tumours and cancer cells with great precision. That makes it especially useful for treating cancers in delicate tissues like the eyes, brain or spinal cord.<\/p>\n\n\n\n
In a separate study, U of G scientists harnessed tumour-killing viruses that may one day help treat devastating forms of breast, brain and pancreatic cancer.<\/p>\n\n\n\n
We wake up the immune system<\/p><\/blockquote>\n\n\n\n
A research team led Dr. Sam Workenhe has shown for the first time that a one-two punch of cancer-killing viruses and chemotherapy can help trigger tumour inflammation, stimulating the body\u2019s immune system to control tumour growth.<\/p>\n\n\n\n
Workenhe, a professor in the Department of Pathobiology, said the study may ultimately help doctors enlist patients\u2019 immune systems to fight cancers with especially poor treatment outcomes from conventional surgery, chemotherapy or radiation.<\/p>\n\n\n\n
\u201cThe implications of these findings for human cancer therapy are huge,\u201d he said. \u201cWe wake up the immune system.\u201d<\/p>\n","protected":false},"excerpt":{"rendered":"
Cancer treatment may become more effective thanks to University of Guelph physicists who have developed an innovative way to accurately target radiation\u202ftherapy. Radiation therapy aims beams of intense energy at a tumour to kill cancer cells. But if the ultranarrow beam is aimed inaccurately, it can hit healthy cells and \u201cunderdose\u201d the target tumour. Led<\/p>\n","protected":false},"author":7,"featured_media":9427,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_FSMCFIC_featured_image_caption":"","_FSMCFIC_featured_image_nocaption":"","_FSMCFIC_featured_image_hide":""},"categories":[14,441],"tags":[844,56],"yoast_head":"\n
U of G researchers work to improve cancer treatments -<\/title>\n\n\n\n\n\n\n\n\n\n\n\t\n\t\n\n\n\t\n\t\n\t\n