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<& What’s it all about? ©

Concurrent systems — made up of independent but
communicating components — are all around us. Fa-
miliar examples include:

¢ The network of bank cash machines
¢ The internet

¢ The network of “Switch” machines
¢ The components of a PC

¢ The telephone system

Understanding, designing and building concurrent sys-
tems is a major challenge for computer science. The
problems involved are in a different league from the
problems of sequential programming, and a system-
atic approach is essential.

This course aims to equip you with some of the the-
ory, tools and techniques needed to understand and
analyse concurrent systems, and to enable you to take
a systematic approach to designing your own.
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& CSP ¢

We will learn CSP (Communicating Sequential Pro-
cesses), which is a theoretical notation or language
for modelling concurrent systems. CSP is supported
by various software tools which enable systems to be
analysed and debugged, and we will use two in partic-
ular — ProBE and FDR — to assist in learning CSP
and also to perform analyses of the systems which we
consider.

CSP is a language which allows concurrent systems
to be described in a more fundamental and abstract
way. |t was devised by C. A. R. Hoare. and developed
at the University of Oxford during the 1980s.

CSP describes processes — objects or entities which
exist independently, but may communicate. During
its lifetime, a process may perform (engage in, do)
various events or actions. These events are the visi-
ble parts of the behaviour of the process. In different
systems, events correspond to different physical ac-
tivities, but CSP treats them in a uniform way. As we
will see, various styles of inter-process communication
can be built up from the idea of events.
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<& Processes and Events &

Example: When describing a simple vending ma-
chine, which sells chocolates, we may be interested in
the events coin, representing insertion of a coin into
the machine, and choc, representing the appearance
of a chocolate.

Example: To describe a more complex vending ma-
chine, which sells two sizes of chocolate and gives
change, we might need the events in the set

{inlp, in2p, small, large, outlp}.

Notice that we make no distinction between events
caused by the machine and events caused by the user
of the machine. We will see later how to represent
the machine and the user as separate processes.

The set of events which a process may use is called
its alphabet or interface. The alphabet of a process
P is written a(P).

Example: To describe a lecture as a process LEC'T,
we might decide that

a(LECT) = {start, end, exercise}.
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<& Events and Interfaces &

During the lifetime of a process, each event in the
interface may occur once, many times, or not at all.

Which events we decide to include in the interface of a
process depends on which aspects of its behaviour we
are interested in. If we only care about the beginnings
and ends of lectures, we might decide that

a(LECT) = {start, end }.

For the moment, we will not normally define the inter-
face of a process separately; it will be defined implic-
itly by the events which appear in the process def-
inition. Later it will become important to specify
interfaces in advance.

<& Process Behaviour ©

The simplest possible behaviour is to do nothing. The
process which does nothing is written STOP.

The simplest way of constructing non-trivial processes
is by means of prefixing, which allows events to occur
in sequence. If P is a process and a is an event, then

a — P

is a process which can perform the event a and then
behave like the process P.
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Example: Defining
VM = coimn — STOP

gives a vending machine which accepts a coin but
then does nothing else.

VM = coin — (choc — STOP)
gives a machine which works, but only once.

VM = STOP

is a broken machine which cannot even accept a coin.

The expressions P — () and a — b, where P, ()
are processes and a, b are events, are not allowed.
Prefixing is only used with an event and a process.
In expressions such as a — (b — P), the brackets
are usually omitted.

When we define a CSP process, we are only describing
the relative order of events; nothing is said about
timing. It is not possible for two or more events to
occur simultaneously.

Example: If LECT = start — end — STOP
then we have captured the fact that a lecture begins
and ends, but not the fact that a set time elapses in
between.
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<& Recursion <

Using STOP and prefixing we can only construct
processes which must stop after a finite number of
events. Very often we are interested in processes
which run forever. To describe them we need re-
cursive definitions.

Example: To describe a clock, we are only interested
in the fact that it ticks, so we just need one event
tick. We can define

CLOCK = tick - CLOCK.

The process CLOCK can perform the tick event
repeatedly. Substituting for CLOCK on the right
hand side of the definition gives

CLOCK = tick — tick — CLOCK
= tick — tick — tick ...

Example: We can define a vending machine which
does not stop after one transaction:

VM = coin — choc — VM
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4 N
A \What is the difference between the recursive def-

initions we have seen so far, and a typical recur-
sively defined function in C++ or ML?

In CSP we can define a collection of processes by
mutual recursion, such as

VM = coin — VM _PAID
VM _PAID = choc — VM.

Example: |If we define

LECT = start — INLECT
INLECT = exercise — INLECT

then we have a never-ending lecture in which you
can't even go to sleep.
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<& Choice ©

So far we have only defined processes which perform
a single sequence of events, either just once or re-
peatedly. We also want to describe systems which
may have alternative behaviours, perhaps determined
by their environment.

If P, () are processes and z, y are distinct events,
then
t—P|ly— Q

Is a process which can either do the event x and then
behave like P, or do the event y and then behave like

Q.

This is pronounced “x then P choice y then ()", or
sometimes “x then P or y then @)

Example: A ticket machine sells tickets to Staines,
for one pound, or Ashford, for two pounds. We can
describe it as a process TICKET, with interface
{staines, ashford, pound, ticket}.

TICKET =
staines — pound — ticket — STOP
| ashford — pound — pound — ticket — STOP
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4 )

We can combine choice with recursion, for example
to define a more useful ticket machine:

TICKETS =
staines — pound — ticket — TICKETS
| ashford — pound — pound — ticket — TICKETS

Some choices in a recursive process may lead to ter-
mination:

TICKETS =
staines — pound — ticket — TICKETS
| ashford — pound — pound — ticket — STOP

We can also define choices with more than two alter-
natives:

t—>Ply—>Q|...|2—R.

Note that we cannot write P | () for processes P and
(). We can only use | in conjunction with a collection
of distinct prefixes. This is to ensure that situations
such as x — P |  — () cannot arise.

Example: Suppose the ticket machine needs to be
turned on before use, and can be turned off after any
transaction.

MACHINE = on — TICKETS
TICKETS =
staines — pound — ticket — TICKETS
| ashford — pound — pound — ticket — TICKETS
| off - MACHINE
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Suppose we want to model a lecture as a process
LECT with alphabet {start, end, exercise}, as be-
fore.

A Define LECT so that a lecture starts, may con-
tain any number of exercises, and may eventually
end.

We can model the career of an undergraduate as a
process STUDENT with alphabet

{yearl, year2, year3, pass, graduate}.
A simple definition of an ideal degree programme is

STUDENT = yearl — pass — year2 — pass —

yeard — pass — graduate — STOP.

A Add an event fail to the alphabet of STUDENT,
and modify the definition so that a student can fail
at any point and repeat a year.

When discussing choice, we have ignored the question
of how a choice is made — we have simply listed al-
ternative possibilities. Later we will be able to distin-
guish between choices made by a process and choices
made by the environment in which it is placed.

\
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<& Menu Choice ©

There is another notation for choice, known as menu
choice. If A is a set of events, and for each event z
in A there is a process P(z), then

z:A— P(z)

(pronounced “z from A then P of z") is a process
which can do any of the events in A and then become
the appropriate P(z).

Example: Suppose we define a collection of pro-
cesses with alphabet N:

COUNTDOWNy = 0 — STOP
COUNTDOWN; = 1 — COUNTDOWN,

COUNTDOWN, = n— COUNTDOWN, 4

we can then define
COUNTDOWN =z :N — COUNTDOWN,

which allows the starting point of the countdown to
be chosen.

Think of this definition as
z:N— P(z)
where, for each z € N, P(z) = COUNTDOWN,.

\_
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Menu choice subsumes all the operations we have
seen so far. The choice

o — Prla—>P|...|a— P,
can be written
z:A— Px)
where A = {ay,...,a,} and for each ¢, P(a;) = P;.

The prefixing construction

a — P
can be written
z:A— Px)
where A = {a} and P(a) = P. STOP can be
written
z:{} — P(z)

where no definition for P(z) needs to be supplied.

It will sometimes be useful to think of STOP, prefix-
ing and choice in this way, as special cases of menu
choice.

\_
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& Transition Diagrams <

It is sometimes useful to view processes pictorially.
For example, the process coin — choc — STOP
can be represented by this diagram:

O con O choc O
Such diagrams are called state transition diagrams
or just transition diagrams. Each circle represents
a state of the process; in this example, the states
are coin — choc — STOP, choc — STOP, and
STOP. Each arrow represents an event which the
process may do when in a certain state.

Choices are represented by multiple arrows (with dif-
ferent labels) from a single state.

Example: The transition diagram for the process

TICKET is

staines ashford

pound pound
ticke pound
ticket

A state with no arrows leaving it corresponds to STOP.
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4 )

The transition diagram for a recursive process is cyclic.
For example,

VM = coin — choc — VM

has this diagram:

CcoINn

choc

A larger example: the process MACHINE.

on > off
staines

" ashford

pound pound

ticket pound
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4 )

Problems with transition diagrams include:

o Very large diagrams are hard to draw (and some
processes have an infinite number of states, which

is even worse).

¢ Different diagrams can be drawn for the same pro-
cess. For example, VM also corresponds to the

following diagram:

choc choc

O

O-=

comn

Later we will introduce a mathematical theory of pro-
cess equivalence, with a collection of algebraic laws.

However, it is still useful to talk about process states
and transitions, as a way of defining process opera-
tors.
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<& Interaction &

Up to now we have described simple processes in iso-
lation. Although we have often assumed that our
processes might be placed in some environment and
expected to interact with it — for example, there
should be a customer who will use the ticket machine
— this environment has not been made explicit.

We will now see how to take two (or more) processes
and force them to interact with each other. Interac-
tion between two processes means that they simul-
taneously perform events; an event thus becomes a
joint activity in which two (or more) processes may
participate.

When placing processes in parallel so that they can
interact, it is important to specify which events they
are supposed to be interacting on, or sharing. This is
where alphabets (interfaces) come into play.

If the interfaces of processes P and () are A and B
respectively, then the process

Pl @

is a parallel combination of P and ().
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In this combination, P can only perform events in A,
() can only perform events in B, and any events in
the intersection of A and B require synchronisation

between P and ().

The interface of P should contain at least all the
events used in the definition of P, and similarly for
the interface of ().

Example: Consider processes representing a vending
machine, and a customer:

VM = coin — (choc — STOP | toffee — STOP)
CUST = coin — choc — STOP

a(VM) = a(CUST) = { coin, choc, toffee} = A.

The process VM ,|| , CUST models the interaction
of the customer with the machine. How does it be-
have? Any event done by VM ||, CUST must be
an event which is done simultaneously by both VM

and CUST.

At the first step, both VM and CUST can do the
event coin. We therefore expect VM ||, CUST to
do coin. Subsequently, VM and CUST enter new

states which continue to interact.
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After the event coin, VM becomes
choc — STOP | toffee — STOP
and C'UST becomes
choc — STOP.

Synchronisation is still required for all events, and
therefore only choc can happen. The choice between
choc and toffee in VM is resolved in favour of choc.

After the event choc, both processes become STOP,
so the system becomes STOP ||, STOP, which

cannot do anything else.

We can draw a transition diagram for VM ||, CUST.
VM ||, CUST

coun
(choc = STOP | toffee — STOP) ,||, choc — STOP

choc

STOP ||, STOP
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In this example, both VM and CUST continued to
the end of their potential behaviour. This may not
happen in general: if we change the definition to

CUST = coin — STOP
then after the event coin we get

(choc = STOP | toffee — STOP) ,||, STOP

and nothing further can happen. Although one of
the processes could do either choc or toffee, both of
these events require synchronisation with the other
process; but because ST OP cannot do anything, syn-
chronisation is not possible.

Example: Recall the definition of STUDENT:

STUDENT = yearl — (pass — YEAR?2
| fail — STUDENT)
YEAR2 = year2 — (pass — YEAR3
| fail - YEAR?2)
YEAR3 = year3 — (pass — graduate
— STOP
| fail - YEAR3)

We will now explicitly state that the alphabet is

a(STUDENT) = {yearl, year2, year3,
pass, fail, graduate }

which we will abbreviate to S.
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Suppose that the student has a generous parent, who
buys a present every time the student passes the ex-
ams.

PARENT = pass — present — PARENT
Again we explicitly define the alphabet:
a(PARENT) = {pass, present} = P.

Notice that the event pass now has two different in-
terpretations. For the student it means passing the
exams, but for the parent it means seeing the student
pass the exams.

We can now consider the parallel combination of the
student and the parent:

STUDENT ||, PARENT.

Synchronisation is required for the event pass, which
is the only event in both alphabets. The other events
can happen independently.

The behaviour of this system will be explored in Prac-
tical Sheet 2.
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< More Processes <

Any number of processes can be put in parallel, by
using the || operator repeatedly.

Example: Suppose the student has a tutor who is
annoyed by failure.

TUTOR = fail — shout — TUTOR

a(TUTOR) = {fail, shout} = T

We can add the tutor to the system consisting of the
student and the parent.

(STUDENT ||, PARENT) ¢ p|l; TUTOR

As before, pass must be synchronised between STUDENT
and PARENT. Also, fail (which is the only event
in both SU P and T') must be synchronised between
STUDENT ||, PARENT and TUTOR.

We know that fail events come from STUDENT
not PARENT, so in effect this means that pass
must be synchronised between STUDENT and PAREN'T,
and fail must be synchronised between STUDENT
and TUTOR.
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< More Synchronisation <

Some parallel combinations require some events to be
synchronised between more than two processes.

Example: If a student completes the degree pro-
gramme without failing at all, then the college awards
a prize.

COLLEGE = fail — STOP | pass — C'1
C1l = fail - STOP | pass — C2
C2 = fail - STOP | pass —
prize — STOP

a(COLLEGE) = {pass, fail, prize} = C

Now we can consider combinations of STUDENT
with any or all of PARENT, TUTOR and COLLEGE.

If we combine everything:

((STUDENT ||, PARENT) ¢ p|l; TUTOR)
SUPUTHC COLLEGE

then pass must be synchronised between STUDENT,
PARENT and COLLEGE, and so on.
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4 )
Consider the processes PASS ( “passenger”) and

TICKETS, both with alphabet
A = {ashford, staines, feltham, ticket, pound}
defined by

PASS = ashford — pound —
(ticket — PASS
| pound — ticket — PASS)
| feltham — pound — ticket — STOP

TICKETS = staines — pound —

ticket — TICKETS

O ashford — pound — pound —
ticket — TICKETS

A What is the behaviour of TICKETS ||, PASS?

Draw a transition diagram.

Given a transition diagram, it is possible to define
a process, without using the parallel operator, which
has the same transition diagram.

A Do this for TICKETS ,|| , PASS.
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<& Student and Parent &

The student and the parent, in parallel, behave more
or less as we expected. The only slight surprise is
that after the student has passed an exam, present
and the next year can happen in either order. The
transition diagram contains two squares, which are
characteristic of a pair of events which must both
happen but in either order.

If processes P and () are completely independent
(there are no events which are in both alphabets)
then the number of states of P ,||5 @ is the prod-
uct of the number of states of P and the number
of states of (). However, if the processes must syn-
chronise on some events, this is no longer true. For
example, STUDENT has 8 states and PARENT
has 2 states, but their parallel combination has only
14 states. Because pass cannot happen until after
yearl, PARENT cannot get into its second state
while STUDENT is still in its first state.

Any process can be rewritten in a form which does
not involve ||. Try it for STUDENT ||p PARENT
— it becomes fairly complex. Roughly speaking, if P
has m states and () has n states, then P ,||5 @ has
m X n states (although synchronisation might reduce
the number).
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If we define a process R which has the same transition
diagram as P ,||z @) but does not use ||, then the
syntactic “size” of R will be m x n. However, the
syntactic size of P ||z @ is only m + n. Defining a
system as a parallel combination of several processes
is very compact, and is closer to the way we think
about it.

<& Prizes ©

Recall the parallel combination of STUDENT, PARENT
and COLLEGE. If the student passes every year,
then the system works as we intended and eventu-

ally COLLEGE does prize. However, if fail hap-
pens, then COLLEGE becomes STOP and cannot

do anything else afterwards. This causes a problem
because pass and fail must still be synchronised, and
therefore STUDENT can no longer either pass or fail

— the whole system stops.

We need to change the definition of COLLEGE so
that after fa:l it can still do pass or fail — but never
do prize.

A Write down the new definition of COLLEGE.
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<& Operational Semantics <

The semantics of a programming language is a defini-
tion of what expressions in the language (either com-
plete programs or program fragments) mean. One
style of semantics is operational — the meaning of
program expressions is defined by describing how they
should be executed. An operational semantics can be
thought of as an idealised implementation, or as in-
structions to an implementor.

In CSP, we are interested in the events which a pro-
cess may perform, and we have informally introduced
the operators by describing when processes can do
certain events. We will now introduce the idea of
labelled transitions as the basis of the operational se-
mantics of CSP. Labelled transitions allow us to de-
fine CSP operators more formally; they contain the
same information as transition diagrams, but in a
more manageable form.

A labelled transition has the form
P—"-Q
where P and () are processes and ¢ is an event. It

captures the idea that P can change state to () by
doing the event e.
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Example: The execution of the process
cotn — choc — STOP

can be described by the labelled transitions:

(coin — choc — STOP) (choc — STOP)
(choc — STOP) . STOP

When defining CSP operators, we will use labelled
transitions to precisely describe the possible behaviour
of the processes being defined. We use inference rules
of the form
hypothesis 1. .. hypothesis n [
conclusion

comm

side condition]

In such a rule, the hypotheses are usually labelled
transitions of certain processes; the conclusion is a la-
belled transition of a process being defined by means
of a new operator. Some rules have a side condition,
which is an extra condition necessary for the rule to
be applicable. We will often refer to these rules as
transition rules.

The rule for prefixing is

a

(a — P) P
There are no hypotheses, which means that we al-

ways know that (¢ — P)——— P. This is true for all
processes P, and all events a.
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There is no transition rule for STOP. This means
that it is never possible to deduce a transition for
STOP, which is exactly what we want.

To define choice (from a finite number of alterna-
tives) we use one rule for each possible initial event.
For example, the process a — P | b — @ is defined
by the following pair of rules.

a

a—Plb— Q

a—>P|b—>Q—b»Q

For menu choice we use this rule:

la € A

a

z:A— P(x) P(a)

The side condition @ € A indicates that the rule
only applies to events in the specified set A of initial
possibilities.

Notation: the use of z in the process z : A — P(z)
suggests a general, as yet undetermined event. The
use of a for the event labelling the transition repre-
sents a particular event. This usage follows the com-
mon mathematical convention of using letters close
to the end of the alphabet as variables, and letters
close to the beginning of the alphabet as constants.
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When a named process is defined, we should be able
to replace the name by its definition wherever it is
used. The transition rule for named processes states
that any transition of the right hand side of a defini-
tion is also a transition of the defined process.

Example: If we define
DOOR = open — close - DOOR

then because we have

open

(open — close — DOOR)

(close = DOOR)
we also have

DOOR

open

(close — DOOR).
Then

close

(close — DOOR) DOOR

This is all the information we need about the be-

haviour of DOOR.

Note: the operational semantics of CSP appears in
“Concurrent and Real Time Systems: the CSP Ap-
proach” and Roscoe's “Theory and Practice of Con-
currency” but not in Hoare's “Communicating Se-
quential Processes”.
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<& Transitions for Concurrency <&

Here are the transition rules for the concurrency op-
erator.

a

P P’ la € A,a € B]
P yllp @——P 4llp €

a

Q Q la € B,a & A
P A”B Q—7PF A“B Q,

a

P PT_Q Q la € AN B]
Py @——P 4lp @

<& Examples ¢

Example: Processes VM and C'UST with
a(VM) = {coin, choc, beep} = A
a(CUST) = {coin, choc, eat} = B
VM = coin — beep — choc — VM
CUST = coin — choc — eat — CUST.

In

VM {coin,choc,beep} || { coin,choc,eat} cUST

the events beep and eat happen independently, but
cotn and choc require synchronisation.

\_
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VM ||, CUST

coin

beep — choc — VM ||z choc — eat = CUST

beep

choc = VM ,||z choc = eat — CUST

choc

VM |5 eat = CUST

eat

VM ||, CUST

J
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If we change C'UST so that

a(CUST) = {coin, choc, shout} = A
CUST = coin — shout — choc — CUST

then

VM 4|l CUST
beep — choc — VM ||z shout — choc —

CUST
and now beep and shout, neither of which requires

synchronisation, could happen in either order. Here
is the complete transition diagram.

con

comm
beep shout
shoh %P
choc
N J
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Example: To describe the movement of a counter
on the board

O

we can define two processes:

a(LR) = {left, right}

a(UD) = {up, down}
LR = left — right — LR | right — left — LR
UD = up — down — UD

and then

LR {left,right} H {up,down} UD

describes the whole system.

An alternative way of describing this system is to de-
fine a collection of processes IR, , representing the
behaviour when the counter starts from coordinate
position (z,y):

R0,0 = nght — Rl,O ‘ up — RO,l

RO,l = T’[;ght — Rl,l ‘ down — Ro,o

and then

Rlao = LR {left,m'ght}”{up,down} UD.
N J
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Because of the way synchronisation is needed for events
in both alphabets, it is possible to control or restrict
the behaviour of a process by adding another process
in parallel.

Example: Recall that with the most recent defini-
tions of VM and CUST, VM || CUST can do
beep and shout in either order. If we define another

process CONTROL with

a(CONTROL) = {beep, shout} = C
CONTROL = beep — shout - CONTROL

then

(VM ,||g CUST) 4,5llc CONTROL
behaves like the process P defined by

P = coimn — beep — shout — choc — P.
This also illustrates the need to be careful about al-
phabets: if
a(CONTROL) = {beep, shout, coin, choc} = D
and CONTROL has the same definition, then
(VM ,||g CUST) 4,5llp CONTROL = STOP

because CONTRQOL cannot do a coin event.
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<& Traces ©

A trace of a process is a finite sequence of events, rep-
resenting the behaviour of the process up to a certain
point in time. Traces are written as comma-separated
sequences of events, enclosed in angle brackets: for
example, (coin, choc, coin). This is a trace of the
recursive version of VM.

Example: (open, close) and (open, close, open) are

traces of DOOR.
(DOOR = open — close - DOOR)

Example: (staines, pound) and (ashford, pound)
are traces of TICKET, and also of TICKETS.

We will only consider finite traces.

The empty trace, containing no events, is written ()
and pronounced “empty” or “nil". It is a trace of
every process, corresponding to an observation when
no event has yet happened.

If a process is defined without recursion, then it has
a bound on the length of its traces. For example, if

PHONE = ring — answer — STOP

then the only traces of PHONE are (), (ring) and
(ring, answer).
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A recursive process, which can keep performing events
forever, can have an infinite set of traces. For exam-
ple, if

CLOCK = tick - CLOCK

then the traces of CLOCK are
(), (tick), (tick, tick), (tick, tick, tick), . ..
It is important to be clear about the fact that we are

interested in potentially infinite sets of finite traces.

<& Operations on Traces <&

We will use various operations on traces, and a num-
ber of facts or laws about them. Most of the laws
are rather obvious.

<& Concatenation ¢

The first operation is concatenation, also called cate-
nation. It joins traces together into longer traces:

<a1,...,am>/\<b1,...,bn>:<a1,...,am,b1,...,bn>.

Example: (coin, choc)”(choc) = {coin, choc, choc).
Concatenation is associative, and the empty trace is
a unit, I.e.
tT’o ~ (t?“l ~ t?“g) — (t?“o ~ tﬁ) ~ t?”g
O tr=tr=tr" ()
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The following laws are useful:
tro " try = try 7 try if and only if tr; = try
tro " try = try 7 try if and only if trg = try
tro " try = () if and only if ¢ty = () and tr; = ()

If n is a positive integer, then {r" is defined to be
n copies of the trace tr concatenated together. tr”
can be defined recursively by

= ()

tr' T = tr T ™,

<& Functions on Traces ¢

Suppose f is a function which maps traces to traces.

f is said to be strict if f({)) = (), and distributive if
f(tTo & t7°1> = f(t?“o) /\f(tﬁ).

In fact, any distributive function is strict: if f is dis-
tributive then

ftr) =G = f(tr) = f(tr Q)
= f{tr) " f(Q)

and so f(()) = ().

If f is distributive then its action on traces can be
put together from its action on single-event traces:

f((ar, ..o an)) = f({a) 7.7 (an))
= f({a)) 7.7 f((an)).
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<& Restriction ¢

The expression tr|A denotes the trace tr when re-
stricted to events in the set A. tr[A consists of tr
with all events outside A omitted.

Example:

(start, exercise, exercise, end)[{start, end}
= (start, end).

(start, exercise, exercise, end) [{start, exercise}
= (start, exercise, exercise).

Restriction is distributive and therefore strict:
OrA = ()
(trg " tr)[A = (tro]A) 7 (triTA).
The effect of restriction on single-event traces is clear:
(£)]A = (z)ifz € A
(#)[A = () ifzg A
Two other facts:

triiy = Q)
(trfA)[B = tr{(AN B)
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<& Head and Tail ©

If tr is a non-empty trace, its first event is denoted
try and the trace consisting of all events after the
first is denoted tr'.

Neither ()o nor ()’ is defined.
Example: (coin, choc)y = coin.
(coin, choc) = (choc).

A few facts:

((x) " tr)y =z
(z) " tr) = tr
tr = (trg) ~ tr'

O Star ©

If A is a set of events, the set A* is the set of all
finite traces, including (), containing events from A.

Example:

{a,0}" =10,(a),(b), (a, a),{a, b}, (b, a), (b, b),...}
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& Ordering <&

A trace try is a prefix of a trace try if there is some

extension try of trg such that trg = try, = tr;. We
then write trg < try.

Example:
(a,b,c) (a,b,c,d)
() < (a,b)

<& Length &

VAN/A

The length of the trace tr is denoted #ir.
Example: #(a,b) = 2, #() = 0.

<& Traces of a Process ¢

In general a process has many different possible be-
haviours, and we do not know in advance which traces
will be generated by a particular execution. However,
we can determine in advance the set of all possible
traces of a process P. This set is written traces(P).

Examples: traces(STOP) = {()}.
traces(coin — STOP) = {(), (coin)}.
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traces(CLOCK ) = {(), (tick), (tick, tick), ...}
= {tick}"

We can now systematically write down definitions of
traces(P) for processes P constructed from the op-

erators we have seen so far. We already know the
definition for STOP:

traces(STOP) = {()}.

traces(a — P) is constructed from traces(P) by the
addition of a as an initial event:

traces(a — P) = {() }U{(a)"tr | tr € traces(P)}.

Notice the addition of the trace (), which must always
be a trace of any process.

The definition of traces(a — P | b — Q) is similar,
taking account of the two possible first events:

traces(a — P | b — Q) = {()}
U {(a) " tr | tr € traces(P)]
U {{b) " tr | tr € traces(Q)}.

e e

Also similarly, we can give a general definition of
traces(x : A — P(x)).

traces(z : A — P(z))

= 107

U {(a) " tr|ae€ A, tr € traces(P(a))}.
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A few facts about traces:

() € traces(P), for any P.

If try 7 try € traces(P) then try € traces(P).
traces(P) C (a(P))*.

Describing the set of traces of a recursive process is
more complicated. Suppose we have the definition

X = F(X)

where F'(X) is a guarded expression. Guardedness
means that we know at least the possible first events
of F(X). In fact, they are the same as the possible
first events of F'(STOP), whatever X is.

Example: If X = a — X then we know that X
can do a first, and this is the same first event as in

a — STOP.

Depending on the form of F'(X), we may know more
than just the first event.

Example: If X =a — b — X | ¢ = X we know
that X can either do a then b, or ¢, so we know that
(a,b) and (c) are traces of X. They are also traces

of a - b— STOP | ¢ — STOP.

We can discover some traces of X by looking at
F(STOP). For the traces corresponding to running
through F' twice, we need to look at F'(F(STOP)).
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Example: If X = a — X we also have
X=a—a—X

so (a, a) is a trace of X.

f X =a—b— X | c— X wealso have

X=a—=>b—=(a—b—>X]|c—X)
lc—(a—=>b—X]|c— X)

So (a, b, a), (a,b,c), (c,a,b) etc. are traces of X.
In general we can define iteration of [
F(X) =X
F"™H(X) = F(F"(X))
and then, for X = F'(X), we have
traces(X) = U traces(F"(STOP))

n=0

= traces(STOP) U traces(F(STOP))
U traces(F(F(STOP)))U...

Writing down the set of traces of a recursive process
in a compact form is a little challenging. For example,
if X = a — b — X, then traces(X) contains
not only (a,b), {a,b,a,b), (a,b)® and so on, but
also the intermediate traces ending in a. One way to
describe traces(X) is:

traces(X) = {tr | for some n, tr < {a, b)"}
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& Traces and Diagrams <

There is a connection between the transition diagram
of a process, and its traces. For example, recall the

process TICKETS defined by

MACHINE = on — TICKETS
TICKETS = staines — pound — ticket
— TICKETS
| ashford — pound — pound — ticket
— TICKETS
| off - MACHINE

and its transition diagram:

ticket

For any path through the diagram, starting from the
black state, there is a trace consisting of the sequence
of labels on the path. traces(TICKETS) is the set

of traces corresponding to all these paths.
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<& Traces and Transitions <

The operational semantics of CSP allows us to un-
wind the behaviour of a process, one event at a time.
Looking at the traces of a process gives us an overall
view. Since the traces can be extracted from a tran-
sition diagram, and labelled transitions are supposed
to capture the same information as the diagrams, we
should also be able to write down a relationship be-
tween a process traces and its labelled transitions.

Here it is:
traces(P) = {({)}
U {{a) " tr| P——Q,tr € traces(Q)}.

Later we will be defining new CSP operators, by means
of labelled transition rules. We will use this relation-
ship between transitions and traces to calculate the
traces of processes defined in terms of the new oper-
ators.

<& Exercises ©

A Write down traces( TICKET), where TICKET
is defined as before by

TICKET = staines — pound — ticket — STOP
| ashford — pound — pound — ticket — STOP
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<& Exercises ©

A Define a process P such that

traces(P) = {{), (a), (b), (b, ¢) }.

A Define a process P such that (a, b, ¢) and (a, b, a)
are both traces of P.

A |s there a process P such that

traces(P) = {(), (a), (a, b),{c,d)}"
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& Traces for Concurrency <

traces(P 4|z Q) = {tr | tr € (AU B)"
and tr[A € traces(P)
and tr|B € traces(Q)}

If A = B, this definition reduces to

traces(P 4|, @) = {tr | tr e A"
and trfA € traces(P)
and tr[A € traces(Q)}

i.e. traces(P 4|4 Q) = traces(P) N traces(Q),
because if tr € A* then tr[A = tr. This fits in with
the earlier discussion of concurrency with the same
alphabet.

If AN B = {} then every event in a possible trace
of P ,||z @ is either an event from A or an event
from B. In a trace tr of P ,||5 @, the events from
A (i.e. tr[A) must form a trace of P, and similarly
the events from B must form a trace of (). Any
pair of traces, one from P and one from (), can be
interleaved to form a trace of P ,||5 Q.

Example: (left, right, right) is a trace of LR and
(up, down) is a trace of UD. So

(left, up, down, right, right)
is a trace of LR || UD.
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In general, a trace of P and a trace of () can be used
to form a trace of P ,||5 @ as long as the events in
A N B appear in the same order in both traces.

Example: {(coin, beep, choc) is a trace of VM and
(coin, shout, choc) is a trace of CUST. The events
common to both alphabets (i.e. coin and choc) ap-
pear in the same order in both traces.

(coin, beep, shout, choc) and {coin, shout, beep, choc)
are both traces of VM || CUST.
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& Trace Equivalence ¢

We have spoken vaguely of processes being equivalent
to each other — for example, a process which can do
no events is equivalent to STOP. In CSP there are
in fact several notions of process equivalence, each
of which is useful in different situations. The first is
trace equivalence, denoted by =, and defined by

P=rQ
if and only if

traces(P) = traces(Q)

Two processes are trace equivalent if they have the
same observable behaviour, as measured by traces.

Example: Consider the process
a = STOP ¢, pllgap b — STOP.

The definition of traces for a parallel combination of
processes gives

traces(a — STOP ¢, ||, 5y 0 — STOP)
= {tr € {a,b}" | tr[{a, b} € traces(a — STOP)
and tr{{a, b} € traces(b — STOP)}.

ie. traces(a = STOP ¢, ll¢, 3 b = STOP)
= traces(a — STOP) N traces(b — STOP).
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Because

traces(a — STOP) = {(),{a)}

e traces(b — STOP) = {(), (b)}

we get

traces(a — STOP ¢, pll¢, 5y 0 — STOP) ={()}.
Therefore
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& Refinement and Specification <

The refinement relation C 7 on processes is defined

by

PCr @
if and only if
traces((Q)) C traces(P)

P Cp @ is pronounced “P is refined by ()". The
subscript 7' indicates that we are working with traces
— later we will see other forms of refinement.

P is refined by () if () exhibits at most the behaviour
exhibited by P — possibly less.

Example:

a—b— STOP Cyra— STOP

Example: For any process P, P T STOP.

The main use of refinement is in specification. If
we think of P as defining a range of permissible be-
haviour, then the statement P C ¢ () can be read as
the specification that ()'s behaviour must stay within
this range.
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<& Example <

Recall the example of a counter moving on a board.

O

LR = left — right — LR O right — left - LR
UD = up — down — UD

SPEC = LR {left,right}“{up,down} UD

We can now interpret SPEC as a specification for
processes which might describe movements of the
counter. Because SPEC describes exactly the be-
haviours which correspond to staying on the board,
the specification

SPEC Er P

specifies that P must describe movement within the
board — possibly restricted movement.

For example,
SPEC Cr left — up — STOP

which we can check by writing down all the traces of

the process on the right and showing that they are
all traces of SPEC.
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The specification
SPEC T P

limits what P can do, but does not require it to do
anything. For example,

SPEC Cp STOP.

Specifications which simply restrict behaviour with-
out requiring any particular behaviour are known as
safety specifications. They specify that nothing bad
can happen, without specifying that anything good
must happen. STOP satisfies any safety specifica-
tion — doing nothing is always safe.

All specifications which can be expressed using trace
refinement are safety specifications.

Specifications which require something positive to
happen are called liveness specifications. We will see
later how they can be expressed in CSP.

Example: If we define P by
P = left — left — STOP
then we do not have SPEC T P because

(left, left) € traces(P)
(left, left) & traces(SPEC).
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<& The Level Crossing <&

As an example of writing a specification in CSP, we
will look at a railway level crossing. One road and one
railway line cross each other, and as usual there is a
gate which can be lowered to prevent cars crossing
the railway. If the gate is raised, then cars can freely
cross the track. Trains can cross the road regardless
of whether the gate is up or down.

We will consider the obvious safety property for the
level crossing, which is:

There should never be a train and a car on the cross-
ing at the same time,

Of course there are many other properties which we
might like to specify, for example a liveness property:

Whenever a car approaches the crossing, it should
eventually be able to cross.

but for the moment we will stick to safety.

We will use the following events to represent the in-
teresting aspects of the behaviour of the system.

car.approach, car.enter, car.leave, train.approach,
train.enter, train.leave, gate.lower, gate.raise
crash
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The processes CARS and TRAINS supply streams

of cars and trains.

CARS = car.approach — car.enter —
car.leave — CARS
TRAINS = train.approach — train.enter —
train.leave — TRAINS

The following processes model the behaviour of the
crossing. This is a complete description of all pos-
sibilities, including a car and a train simultaneously
using the crossing. Later we will add a control process
which uses the gate to restrict access by cars.

C'R models the crossing with cars and trains. The
processes (', T', C'T' model the crossing when there
Is a car, train or both present, respectively:

CR = car.approach — car.enter — C
O train.approach — train.enter — T

C' = car.leave — CR
O train.approach — train.enter — CT

T = train.leave — CR
O car.approach — car.enter — CT

CT = crash — STOP
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Cars can only enter the crossing when the gate is up:

GATE = gate.lower — gate.raise — GATE
O car.enter — GATE

Defining some sets of events:

Ep = {train.approach, train.enter, train.leave }
E¢ = {car.approach, car.enter, car.leave}
FEqo = {gate.raise, gate.lower, car.enter}

Ex = {crash}

Es = EpUEcU Eqge U Ex
allows us to define the whole system as

SYSTEM = ((CR ETUEC’UEX“EGC GATE)

Es“Ec CARS) ES“ET TRAINS.

To specify that no crashes occur, we need a process
SPEC which can do any event except for crash.

O gate?x : {raise, lower} — SPEC

In general, RUN 4 is the process which can repeat-
edly do events from the set A:

RUN, = z: A — Runy
SO SPEO — RUNECUETUEGC'

The requirement that the crossing satisfies this spec-
ification is expressed by

SPEC Ep SYSTEM .

\_

SPEC = train’z : {approach, enter, leave} — SPEQ
O car?z : {approach, enter, leave} — SPEC
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It is possible to use the FDR tool to check trace re-
finement, and this is the easiest way to show that the
specification is not satisfied (not surprisingly, as we
haven't imposed any restrictions on when the gate
can be raised or lowered).

Now we will define a process CONTROL which,
when placed in parallel with SYSTEM , will constrain
the behaviour so that whenever a train approaches
the gate must be lowered. This will be achieved by
making CONTROL and SYSTEM synchronise on
certain events. We hope that the result will be a
system which satisfies the safety specification.

CONTROL = (train.approach — gate.lower —
train.enter — train.leave —
gate.raise - CONTROL)

O (car.approach — car.enter —
car.leave - CONTROL)

SAFE_SYSTEM =
SYSTEM ESHETUEC’UEGC’ CONTROL
Again, FDR can be used to test whether
SPEC Ty SAFE_SYSTEM

and this time we will find that it does.
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4 )
Here is an alternative way of checking SYSTEM.

Notice that when a car and a train use the crossing
at the same time, the event crash occurs, and the
system stops. This is the only point at which we have
deliberately introduced STOP into the system, and
we hope that there are no other deadlocks.

If we use FDR to check SYSTFEM for deadlock-
freedom, then every time a deadlock is found we will
see a trace leading to ST OP. If the trace ends in
crash, then we have identified a violation of safety.
If the trace ends with some other event, then there
is another deadlock in the system, which presumably
represents a mistake in our model.

In general there are many different ways of modelling
a system, and many different ways of writing a spec-
ification. The challenge is to model the system in
such a way that the bad property appears as a kind
of behaviour (in this example, occurrence of crash)
which can be ruled out by a suitable specification.
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<& Another Level Crossing <

Here is another way of modelling the level crossing.
Remove the crash event, and change the definition

of C'T to
CT = car.leave — T
O train.leave — C.

Also introduce
E¢ = {gate.raise, gate.lower}
and change the definition of Eg to
Es=FEcUEr U Eg.
Similarly to before,

SYSTEM = ((CR ETUEC”EGC GATE)
pllg, CARS) p|lp, TRAINS.

The specification now consists of two parts.

SPEC1 = RUNg,
SPEC?2 = train.approach — train.enter —
train.leave — SPEC?2
O car.approach — car.enter —
car.leave — SPEC?2
SPEC = SPEC1 EG“ETUEC SPEC?
SPEC'1 allows the gate to be raised and lowered

freely. SPEC?2 only allows trains and cars to enter
the crossing separately.
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Again we can check
SPEC Cr SYSTEM
which is not true, and define
SAFE_SYSTEM = SYSTEM ES“ES CONTROL
and check

SPEC Cp SAFE_SYSTEM

which is true.
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<& Input and Output &

So far we have treated all events in the same way,
regardless of whether they are thought of as inputs or
outputs. It is useful, however, to introduce separate
notation for inputs and outputs.

We will use events of the form c.v where ¢ is the
name of a channel and v is the value of a message
passing along the channel. Each channel has a type,
which is simply the set of possible values which can
be transmitted along it. If the type of c is T', then
the set of events associated with c is {c.t | t € T'}.

We can define two new forms of prefixing. The pro-
cess clv — P outputs the message v on the channel
c and then behaves like P. We require v € T, where
T is the type of ¢. Infact, clv - P =cv — P
(using the ordinary prefix notation), but the c!lv no-
tation emphasises the fact that ¢ and v are viewed
as a channel and a message.

The process c¢?xz : T — P(z) is prepared to input
any value z of type T, and then behave like P(z).
In the ordinary menu choice notation,

c’lx: T — P(x) =

y:{cz|z¢€ T} — P(message(y)),

where, if y = c.z, message(y) = z.
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We can define input and output prefixes, using la-
belled transition rules, as follows.

(clv — P)—"P

v e T
(c?z: T — P(z))—— P(v)

Example:
COPYBIT = in?x : {0,1} — outlx — COPYBIT

COPY ="’z : N = outlx — COPY

SQUARE = in?z : Z — out!(z*xz) - SQUARE

\_ J

(Concurrent and Real Time Systems: Specification (©Gay/Schneider 62)




\_

& Specifications <

Recall the definitions for the specification of the sys-
tem consisting of the student and the college.

STUDENT = yearl — (pass — YFEAR?2
| fail - STUDENT)

YEAR2 = year2 — (pass — YEAR3

| fail - YEAR?2)
YEAR3 = year3 — (pass — graduate — STOP
| fail — YEAR3)

COLLEGE = fail — CF | pass — (1
C1l = fail - CF | pass — C2
C2 = fail — CF | pass — prize — STOP

CF = fail — CF O pass — CF
SYSTEM = STUDENT ||, COLLEGE

Initially we defined

SPECF = pass — SPECF | fail - SPECF

SPEC = pass — SPEC1 | fail - SPECF
SPEC1 = pass — SPEC?2 | fail - SPECF
SPEC?2 = pass — prize — STOP | fail — SPECF

but the specification
SPECP T SYSTEM

Is not quite what we want, because it does not allow
SYSTEM to do yearl, year2, year3 or graduate.
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& The Correct Specification <&

To allow for yearl, year2, year3 and graduate we

defined

EXTRA = yearl — EXTRA
| year2 - EXTRA
| year3 — EXTRA
| graduate - EXTRA

and then
SPEC = SPECP SP||E EXTRA

where

SP = {pass, fail, prize}
E = {yearl, year2, year3, graduate }.

In general, to simplify the definition of processes such
as FXTRA, we can define, for any set A of events,
the process RUN 4.

RUN,=1:A— RUN,
Then EXTRA = RUN g, and SPECF = RUN {405 juit}-
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<& Hiding <

There is an alternative approach to this kind of spec-
ification. Instead of putting a process in parallel with
the specification to generate the events which we
don't care about, we can hide those events from the
process being specified.

If we define

NEWSYSTEM =
SYSTEM \ {yearl, year2, year3, graduate }

then the behaviour of NEWSYSTEM is derived from
that of SYSTEM by making the listed events invisi-
ble. The traces of NEWSYSTEM are the traces of
SYSTEM with these events removed.

Now we can simply write
SPEC Ty NEWSYSTEM.

as the specification. SPEC only involves the events
which we are interested in, and the hiding in the defi-

nition of NEWSYSTEM shows which events we are

leaving out of the specification.
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& Using Hiding <&

Returning to the level crossing example, there is an al-
ternative approach to specifying the desired behaviour.
We can use hiding to avoid specifying the events
which we don't care about. In this case, all we want
to do is specify that crash never occurs.

If we hide all the events except crash from SYSTEM
(or SAFE_SYSTEM) then all we need for the spec-

ification is a process which never does crash:

STOP Ty SYSTEM \ (Er U Ec U Eg)
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<& Defining Hiding <

The transition rules defining hiding are

P P’ la € A
P\A——P'\ A

PP fag Al
P\A-"“-P'\ A

As we saw when using FDR, the hidden events are re-
placed by 7, representing “silent” or “internal” events.
T events are not normally included in traces, although
as we have seen, FDR can show where in a trace the
7 events occur. When we discuss traces, we will not
include 7.
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& Choice between processes <

We have used | and menu choice to describe pro-
cesses which have alternative behaviours. We have
emphasised that | is not an operation on processes,
but can only be used in conjunction with distinct pre-
fixing events.

However, CSP does have operators which can be used
to provide a choice between two (or more) existing
processes. They are:

external choice - the environment can choose be-
tween the various processes

internal choice - the choice is made within the pro-
cess, and cannot be observed by the environment.

By the environment, we mean whatever processes are
in parallel with the process containing the choice.

The distinction between choice made by a process and
choice made by its environment is important, because
problems could arise if two processes have both been
given control over a particular choice.
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<& External Choice <

The process P O () (pronounced “P external choice
Q") is initially prepared to do any event which either
P or () could do. After the first event, the behaviour
is either that of P or that of (), depending on which
process did the event. The choice is called “external”
because the environment (another process in parallel)
can choose the first event.

Example: The journey from A (the bus station) to
B is covered by two bus routes: the 37 and the 111.
If both buses are present at the bus station, then the
service offered to the passenger is described by the
process

SERVICE = BUS37 O BUS111.

The passenger can choose which bus to use.

Here are possible definitions:

BUS37 =
board.37.A — (pay.90 — alight.37.B — STOP
| alight.37.A — STOP)

BUS111 =
board.111.A — (pay.70 — alight.111.B — STOP
| alight.111.A — STOP)

Note that in this case, we do not think of events such
as alight.111.B as related to input or output.
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If the passenger is defined by

PASS = board.37.A — pay.90
— alight.37.B — STOP

then we can consider what happens when the pas-
senger and the bus service interact, i.e. when we con-
struct

SERVICE , sprvice)lla(pass) PASS.
SERVICE can behave either as BUS37 oras BUS111,

and the choice is made by the environment. The fact
that PASS can only do board.37 as its first event,
means that BUS37 is chosen.

The system behaves exactly as if we had written

SERVICE

= board.37.A — (pay.90 — alight.37.B — STOP
| alight.37.A — STOP)

| board.111.A — (pay.70 — alight.111.B — STOP
| alight.111.A — STOP)

In general, (¢ — P) O (b — @) is equivalent to
a — P|b— @, and it is possible to use O instead
of | (this is what FDR does).

However, we can also write (¢ — P) O (¢ — Q)
(remember that a — P | a — @ is illegal) — we
will see what this means soon.
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<& Defining External Choice <&

Here are the transition rules for external choice.

i Q——-qQ
poQ-—"-p pOQ-—"-¢q
) R Q——@Q
POQ——POQ PpOQ-—"—~p0O(

The first two capture the intention that the choice
is resolved by the first event. The second two al-

low either process to change state internally without
resolving the choice.

Example: Going back to
SERVICE = BUS37 O BUS111

we have the transitions

SERVICE board.37.A

pay.90 — ... | alight.37.A — STOP

board.111. A

SERVICE
pay.70 — ... | alight.111.A — STOP
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<& Internal Choice ¢

The process P I () describes a choice between P
and (), but the environment has no control over the
choice. Internal choice is often also known as nonde-
terministic choice. The choice is resolved internally
by the process.

Suppose the bus company agrees to provide a bus
from A to B, but does not say whether it will be the
37 or the 111. The situation at the bus station is
now described by the process

SERVICE = BUS37 M BUS111.

We should interpret this as a specification of a bus
service. The company could implement the service by
always providing bus 37, or by deciding each morning
which bus to provide, etc. The passenger has no
control over the decision, and cannot tell which bus
will be available until she arrives at the bus station.

If a system is specified by the description P I (),
then all of the following are acceptable implementa-
tions.

¢ provide both P and (), and use some internal
means to choose between them

o just provide P
o just provide ()
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<& Internal Choice &

To define internal choice by means of transition rules,

we use the internal event 7. A transition P —— ()
represents a change of state which is not accompa-
nied by any observable event; it is a change of state
whose occurrence cannot be observed directly by the
environment. We use 7 transitions to model the res-
olution of an internal choice.

Here are the transition rules:

T T

PMQ PMaQ @

Note that these rules capture one approach to imple-
menting P M (), namely to implement both P and
() and then choose between them at random. In or-
der to give transition rules we are forced to choose
an implementation, and this is the most general.

\_ J

(Concurrent and Real Time Systems: Choice between processes (©Gay/Schneider 73)




\_

<& Example <

Consider
SERVICE = BUS3711 BUS111

again, and put it in parallel with PASS. According to
the transition rules, the first event which SERVICE

does will be a 7 event, resulting in either BUS37 or
BUS111. All the events of PASS require synchroni-
sation, so nothing can happen until 7 has been done.

There are two ways for SERVICE to do 7. The first

results in

BUS37 a(SERVICE) ||a(PASS) PASS
and then PASS can interact with BUS3T.
The other possibility results in

BUSTII a(SERVICE)Ha(PASS) PASS

and now the whole system stops because BUS111
and PASS cannot synchronise on any events. This
Is another example of deadlock.
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<& Another example &

Keep the definition
SERVICE = BUS37 1M BUS111

and suppose that there is also a train service from
A to B, described by the process TRAIN. Now the
options available to the passenger are described by
the process

TRAIN O SERVICE
which expands to

TRAIN O (BUS37 1 BUS111).

We have the transition

T

BUS37
and so the transition rules for external choice give

TRAIN O (BUS37 N BUS111)

BUS37 1 BUS111

TRAIN O BUS37
We can interpret this transition as the fact that one
bus service may disappear while the passenger is still
thinking about whether to take the bus or the train.
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If the definition of TRAIN is

TRAIN = board.train.A — alight.train.B
— STOP

then there is also the transition

TRAIN O (BUS37 1 BUS111)

board.train.A

alz'ght.tmz’n.B — STOP

which we can interpret as the passenger choosing the
train without ever discovering which bus is available.
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<& Nondeterminism <

The first form of choice, |, is a special case of external

choice. The process
a—Plb— Q
is equivalent to

a—POb— Q.

However, general external choice has some extra power.
Because it is possible to construct an external choice
between any two processes, we can write, for example

a—P0Oa— Q
(recall that a — P | a — @ is forbidden).

We consider — to have higher precedence than O,
so that this process is the same as

(¢ - P)O(a — Q).

What does this mean? The process
a— POa— @

can either do a and then behave like P, or do a and
behave like (). The environment cannot influence
which of these possibilities will occur: all it can do is
choose to do a in order to interact.
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More generally, the external choice
a—>POa—-QO0Ob0—> R

allows the environment to choose between a and b,
but if a is chosen then the subsequent behaviour
could be that of either P or ().

Using external choice with several occurrences of the
same prefixing event leads to nondeterminism, in the
sense that the event which is observed does not de-
termine the subsequent behaviour.

We will eventually see that
a—POa—>Q=a—>Pa—Q

which emphasises the fact that the environment can-
not choose between P and ().
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<& Connection Diagrams <&

We can think of a process P with alphabet A =
{a, b, c} as a box with three possible points of con-
nection to the outside world. Similarly, () with al-

phabet B = {b, ¢, d}.

o PLb bl Qld
c c

If P and () are put in parallel, b and ¢ are events
which they may (indeed must) jointly participate in.
This can be represented by joining the appropriate
lines; of course, the events b and ¢ are still available
for connection to other processes.

a! P ‘ (Djfd

| |
|
C

Of course we can also consider the process P ,|| 5 )
as a single box:

\_
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& Generalized Operators <

We have seen binary (two-argument) forms of internal
and external choice, and parallel composition. There
are more general forms of all these operators, which
provide a compact notation for a combination of an
arbitrary number of processes.

Suppose we want to define a process RELAY with
n input channels of type T (called in.1...in.n) and
n output channels of type T (called out.1... out.n.
This process should receive a message on any input
channel and send it out on the corresponding output
channel, repeatedly.

We need to define

RELAY = .17z :— out.1lzT — RELAY
O .27z - — out.2lzT — RELAY

O wm.n?z : T — out.nlvr - RELAY .
It is possible to shorten this definition as follows:
RELAY =0;cqi  py in.i?x :— out.ilz — RELAY

In general, if I is a finite indexing set and for each
1 € I there is a process P;, then the process

Oier P;

is defined.
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It behaves as we would expect, given the example
above. Formally the transition rules are

a /
Oje; Pi—— P

and, to deal with internal events:

T

P; P’
Oicr P O;er P,
In the second rule, P/ = P; for 1 # j.

1

jel

T

<& General Internal Choice &

The same applies to internal choice. If I is an index-
ing set (finite or infinite) and for each ¢ € I there is
a process P;, then the process

Mier P;

is a process which can behave like any of the P;. Here
is the transition rule.
e[

T

Mier P P;
Example: A random number generator could be de-
scribed by the process

Mien outle — STOP

Remember that M is a specification construct.
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<& General Parallel &

If I is a finite indexing set such that for each ¢ € [
there is a process P; and an interface set A;, then
the process

H’LE[

is defined.

Any event a requires synchronisation from all pro-
cesses P; for which a € A,.

Example: A group of people must all be present for
a meeting to take place. If N is the set of all the
people’s names, then we can define the interface and
behaviour of each person as follows.

A, = {enter.n, leave.n, meeting}

PERSON, = enter.n — PRESENT,
PRESENT, = leave.n — PERSON,,
O meeting - PRESENT,,

The process

GROUP =|"" PERSON,

describes the situation.
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<& Shared Resources <©

It is common in concurrent systems for a resource to
be shared between a number of processes. Examples
might be a printer or a file server, or an individual file.
It is straightforward to describe this kind of situation
by placing several processes in parallel.

Example: Two users sharing a printer:

PRINTER = requestl — print — PRINTER
O request2 — print — PRINTER
USER1 = requestl — workl — USER1
USER2 = request2 — work2 — USER?2

The parallel combination
USER1 || USER2 || PRINTER

allows each user to work independently, but requires
synchronisation on requestl and request?2 events. If
both users want to print at the same time, one of
them gets in first and the other has to wait.

This is fine, although there is nothing to prevent
USER]1 from getting access to the printer every time,

and excluding USER?2.
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<& Deadlock ©

Now consider a situation in which there are two shared
resources, and both of them must be acquired before
some task can be carried out. One example would
be two shared files, and two programs, both of which
need access to both files simultaneously.

Here is an example borrowed from Schneider. Two
children share a paintbox and an easel. If one child
wants to paint, she has to find the box and the easel;
after painting, she drops both the box and the easel.

FLLA =
(ella.get.box — ella.get.easel — ella.paint —
ella.put.box — ella.put.easel — ELLA)
O (ella.get.easel — ella.get.box — ella.paint —
ella.put.easel — ella.put.box — FELLA)

KATE =
(kate.get.box — kate.get.easel — kate.paint —
kate.put.box — kate.put.easel — KATE)
O (kate.get.easel — kate.get.box — kate.paint —
kate.put.easel — kate.put.box — KATE)

\_ J

(C nnnnnnnn t and Real Time Systems: Choice between processes (©Gay/Schneider 84)




4 )

The easel and the box can each be used by just one
child at a time.

FASEL =
ella.get.easel — ella.put.easel — EASEL
O kate.get.easel — kate.put.easel — EASEL

BOX =
ella.get.box — ella.put.boxr — BOX
O kate.get.box — kate.put.box — BOX

The combination of the two girls, the box and the
easel is

PAINTING = ELLA | KATE || EASEL || BOX

There is a problem with these definitions. If both
children decide to paint at about the same time, it is
possible that one of them finds the box (for example,
ella.get.box happens) and then the other finds the
easel (for example, kate.get.easel). Then none of
the processes can do another event: FLLA is wait-
ing to do ella.get.easel and KATE is waiting to do
kate.get.box. In effect, each child is waiting for the
other, and nothing happens. The system as a whole,
after doing two events, has reached a state of STOP.
This is an example of a deadlock.

A\ Draw a transition diagram for this system.
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Another example (also from Schneider): two furniture
movers who need to move a table and a piano. Each
object requires two people to lift it.

PETE = bift.piano — PETE
1 lift.table — PETE

DAVE = lift.ptano — DAVE
1 lLft.table - DAVE

TEAM = PETE || DAVE

If both people make the same choice, they are able
to cooperate in lifting an object. If their choices are
different, then the result is deadlock:

T

PETE

lift.ptano — PETE

DAVE — - lift.table — DAVE
and

lift.piano — PETE || lift.table — DAVE
cannot do anything; it is equivalent to STOP, or
deadlock.

A Draw a transition diagram for this system, includ-
ing the 7 transitions.

\_
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If the definition of PETE is changed, then the prob-
lem can be avoided:

PETE' = lift.piano — PETE
O [lift.table — PETE

In these examples, our intention was to produce a
system whose behaviour continues indefinitely, and
we view termination (reaching STOP) as deadlock.
If we want to distinguish between intended and un-
intended termination, then we can introduce a new
event to indicate successful termination. (Conven-
tional CSP notation for such an event is v/, and the
process SKIP is defined by v — STOP. Roscoe's
presentation of CSP deals with SKIP in detail;, we
will not use it.)

In general, if we want to check whether a given pro-
cess can deadlock, we have to examine all its possible
behaviours (effectively constructing a state transition
diagram) and look to see whether any STOP states
appear. An alternative is to exploit regularity in the
structure of the process to construct a mathematical
argument proving that deadlock is impossible.

FDR can check for possible deadlocks in a system,
and is able to handle reasonably large systems (con-
taining a few million states) efficiently.

\_ J

(Concurrent and Real Time Systems: Choice between processes (©Gay/Schneider 87)




<& Livelock ©

An attempt to prevent ELLA and KATFE from dead-
locking might adapt ELLA’s description so that she
can return items before they have been used, rather
than wait indefinitely for them to become available.
Thus extra choices are introduced for ELLA when
she holds only one item.

FLLA = ella.get.box —
(ella.put.boxr — ELLA
O ella.get.easel — ella.paint —
ella.put.box — ella.put.easel — FELLA
O ella.get.easel —
(ella.put.easel — ELLA
O ella.get.box — ella.paint —
ella.put.easel — ella.put.box — FLLA

If we are interested only in the paint events, then we
might hide the put and get events. The system we
wish to consider is

SYSTEM = PAINTING \ INT
where

INT = {ella, kate}.{put, get}.{easel, box}
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However, it is possible for FLLA to loop forever, re-
peatedly getting an item and then immediately putting
it back, without achieving any painting. Because
these events are all hidden, this becomes an infinite
loop of 7 events. This is what CSP calls livelock, or
divergence—the possibility of an infinite sequence of
T events.

FDR can be used to detect divergence, and indeed
detects it for this example. (Select “Livelock” from
the tabs below the menu bar, then select SYSTEM
in the “Implementation” field. Clicking on “Check”
does a check for divergence.) A process that can
diverge can never be guaranteed to make any real
progress.

Because the parallel operator in CSP does not make
any guarantees about how often each process will
be executed, (it is not necessarily fair to KATE or
FLLA) and the choice operator makes no guarantees
about how often each of its options will be executed,
it is possible for this painting system to execute for
ever without performing a paint event. However, a
real implementation might well be fair to KATE,
and thus not be divergent in practice. Care is needed
to ensure that the situation detected by FDR would
really arise in the situation being modelled.

\_ J

(Concurrent and Real Time Systems: Choice between processes (©Gay/Schneider 89)




<& Channels and Connections <

COPYBIT = i’z :— outlx — COPYBIT
where we suppose that
in(COPYBIT) = out(COPYBIT) = {0, 1}.

COPYBIT has two channels, in and out. It re-
peatedly receives a single bit on the in channel and
outputs it on the out channel.

a(COPYBIT) = {in.0, in.1, out.0, out.1}.

By convention, a channel is used for communication
between two processes, and in one direction only.
Each channel of a process is either an output channel
or an input channel, according to its use.

In connection diagrams, channels are drawn as ar-
rows, labelled with the channel name.

In

N _COPYBIT oyt .
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A variation on COPYBIT is an inverter:
NOT =i’z :— out!(l —z) - NOT

This illustrates the way that in general an output
value may be an expression involving values which
have previously been input.

Suppose we want to connect two copies of NOT
together, so that the output of one becomes the input
of the other.

in [NOT lout  in |NOT l|out

We would like to do this by placing them in parallel,
but there is a problem: an input in.0 or in.1 is am-
biguously an input for both processes, and there is no
link between the out channel on the left and the in
channel to which it should be connected.

To solve this problem we introduce some new nota-
tion: renaming. Defining two functions f and ¢ on
events by

flout.z) = mid.x  g(out.x) = out.x
flin.x) = in.x g(in.z) = mid.x

(so we have also introduced a new channel called
mid) then f(NOT) is NOT with all events renamed
according to f.
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f(NOT) behaves as if defined by
f(NOT) =in?x :— mid|(1 — z) — f(NOT)
and similarly g(NOT) behaves as if defined by
g(NOT) = mid?z -— out!(l1 — z) — g(NOT).

In general, if P is any process and f : a(P) — Aisa
function, the f(P) has alphabet A and has transitions
defined by

p-t.p

F(P) S (P
Now we can form f(NOT) || g(NOT), and events
on the mid channel represent messages sent from
f(NOT) to g(NOT). Synchronisation is required
for the events mid.0 and mid.1.

A possible sequence of transitions of f(NOT) || g(NOT)

IS:

(in.1, mid.0, out.1, in.0, mid.1, in.0)
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In general if ¢ is an output channel of P and an input
channel of ), then in P || ) communication occurs
on channel ¢ each time P does the event c.v (outputs
message v) and () simultaneously does the event c.v
(inputs message v). () is prepared to accept any c.z,
so it is P which determines the actual message.

We require ¢(P) = ¢(Q). We can then write ¢ for
c(P).

In f(NOT) || g(NOT) the mid.0 and mid.1 events
are visible outside the system. Potentially they could
be interfered with by other processes, although we
would not normally want this to happen; for example,

f<N0T> H 9<N0T> H STOP 4
cannot do the mid events.

The hiding operator can be used to convert mid into
a local channel:

(F(NOT) || g(NOT)) \ mid.
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<& The Dining Philosophers <&

Five philosophers live in a college; they spend most of
their time thinking, but occasionally become hungry.
The college has a communal dining room, with a cir-
cular table and five chairs. In the middle of the table
is a large bowl of rice, and the table is set with five
plates. There are also five chopsticks, one between
each pair of plates. 0

When a philosopher is hungry, he enters the dining
room, sits down in his chair, picks up the chopsticks
on either side of his plate (first the one on the left,
then the one on the right), and eats. Two chopsticks
are needed to eat rice, so if one of the chopsticks is
already in use, he has to wait. When the philosopher
has finished eating he puts down the chopsticks, gets
up from the chair, and leaves the dining room.
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We will model this system in CSP, and analyse its
behaviour. The relevant components are the five
philosophers, which we will model as processes

PHILg ... PHIL,, and the five chopsticks, which we
will model as processes CHOP, ... CHOP;.

Using the symbols & and © to denote addition and
subtraction modulo 5 (so that 4 ® 1 = 0 and 0 ©
1 = 4), philosopher PHIL; will sit in seat ¢ and use
chopsticks 72 and 7 & 1.

The alphabet of PHIL; is

a(PHIL;) = {sitdown;, getup;,
pickup.i.i, pickup.i.(i 1),
putdown.i.i, putdown.i.(i ® 1)}

In the events pickup.i.i etc. the “." is being used
purely as a symbol.

The event pickup.i.1 represents PHIL; picking up
chopstick ¢, and so on.

We will ignore the actions of eating, thinking, and
entering and leaving the dining room.

Because the alphabets of the processes PHIL,; are
mutually disjoint, there can be no direct interaction
between the philosophers. The only way in which
they affect each other will be as a consequence of
the fact that they are competing for access to the
chopsticks.
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The relevant events for the chopsticks are the pickup

and putdown events. (CHOP; can potentially be
picked up or put down by either PHIL; or PHIL;~;.

a(CHOP;) = {pickup.i.i, pickup.(i ©1).1,
putdown.i.i, putdown.(1 © 1).1}

We will define the system as a concurrent combina-
tion of the philosophers and the chopsticks.

PHILS = ||'*"* PHIL,
CHOPS = ||'** CHOP;

COLLEGE = PHILS | CHOPS

sitdowny getupy
PHIL \

CHOP, CHOP,

putdown.1.1
— _|PHIL, PHIL{ —

CHOP; CHOP;

PHI L3 PHIL 2
CHOPy

\_

pickup.1.1

\\ putdown.1.2/ /pickup.1.2

~
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Each process PHIL; simply cycles through a sequence

of six events:

v

PHIL; = sitdown; — pickup.i.(i ® 1) — pickup.i.i —
putdown.i.(1 ® 1) — putdown.i.i —
getup;, — PHIL,

Each process CHOP; can be repeatedly picked up
and put down, but there is a choice of who picks it
up:
CHOP; =

pickup.i.1 — putdown.i.i — CHOP;

O pickup.(i © 1).i — putdown.(i © 1).: = CHOH
Now we can look at the possible behaviour of COLLEGE.

Suppose all the philosophers sit down in order, and
then each one picks up the chopstick to his left.

.

What can happen next? Each PHIL; can only do
pickup.i.1, which requires synchronisation with CHOP;.
However, CHOP; has just done pickup.(i © 1).7 and
therefore can only do putdown.(i © 1).i next. This
means that there is no possible next event for COLLEGE.
We have a deadlock.
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How can we modify COLLEGE to remove the pos-

sibility of deadlock? There are a number of obvious
but unsatisfactory ideas.

¢ Provide two chopsticks for each philosopher. But
if the chopsticks represent scarce resources, this
may not be feasible.

¢ Provide a single extra chopstick, in the middle of
the table, which can be used by any of the philoso-
phers. Similarly, this may not be feasible.

© Modify the definition of just one of the philoso-
phers, so that the chopsticks are picked up in the
opposite order. This will work (although it takes
some thought to be sure) but it breaks the sym-
metry of the system.

Instead we will try to control the way in which the
philosophers sit down, the idea being that if only 4
philosophers are seated at any one time, then even if
everyone picks up the left chopstick, one philospher
will be sitting on the left of an empty place, and can
pick up the chopstick to his right.

As we have seen, the behaviour of a system can be
controlled by adding another process in parallel, and
taking advantage of the fact that certain events re-
quire synchronisation.

\_ J
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We can define a process BUTLER with alphabet
a(BUTLER) =D U U,
where
D = {sitdowny, ..., sitdowny}

U = {getupo, ..., getup,},
to control the sitting down and getting up of the
philosophers. BUTLER is defined in terms of aux-
iliary processes BUTLER, ..., BUTLER,, all with
alphabet o( BUTLER).

BUTLERy = z: D — BUTLER;

BUTLER, = y: U — BUTLER;
BUTLER = BUTLER,

The notation in the second line is shorthand for
BUTLER; =z : (DU U) — P(2)
where
P(z) = BUTLER;,, if z € D
— BUTLER;, {1 if z € U.

Now we can define

NEWCOLLEGE = COLLEGE || BUTLER

A Convince yourself that NEWCOLLEGE does not

deadlock. How formal can you be?

\_

~
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We could consider checking the entire state space
of the system, to discover whether or not it can
deadlock. Since each philosopher has 6 states and
each chopstick has 3 states, the total number of
possible states of COLLEGE is 6° x 3°, or about
1.8 million, though not all of these will be reach-
able (since the states of the chopsticks must be con-
sistent with the states of the philosophers). Since
the effect of BUTLER is to restrict the number of
states, this is also a limit on the number of states of
NEWCOLLEGE. Systems of this complexity are
within the scope of current software tools such as

FDR.
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& The Cyclic Scheduler <&

Suppose there are a number of processes which we
need to control. Each process can be started by a
start event and uses a finish event to indicate that
it has finished. Suppose also that we want to start
the processes in order, returning to the first when the
last has been started; when a process has finished it
can be started again, but only when its turn comes
round.

We will define a scheduler, which uses start and finish
events to control the processes. The scheduler will be
implemented as a collection of cells (processes), each
of which communicates with one of the processes be-
ing controlled, and also with other cells.

The next slide has a diagram of the case where there
are 6 processes to control. @ denotes addition mod-
ulo the number of processes.

The idea is that each cell waits for a signal on the ¢
channel to its left, which means that the process to
its left has been started. Then the cell starts its own
process, and sends a signal on the ¢ channel to its
right, to tell the next cell that it can start its process.
Also, each cell has to wait for its process to do finish
before starting it again.

\_ J
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start.1 finish .1

/A

In order to start everything off, one cell must begin
by starting its process instead of waiting.

STARTCELL; = start.i — c.(i®1) —
( finish.i — c¢.i - STARTCFELL;
O c.i — finish.e - STARTCFELL;)

The other processes wait for c.z
WAITCELL; = c.i — STARTCELL;

It is convenient to define

CELLy = STARTCFELL,
CELL; = WAITCELL, (z > 0)
and then

0<i<n
SCHED = (H{sta:t.z',ﬁmsh.z',c.z’,c.(z@l)} CELLZ) \
{ci|0< 1< n}

\_ J
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There are three properties which we would like to
verify for the scheduler. The first is that for each
1, the events start.i and finish.: happen alternately,
beginning with start.i. The second is that the events
start.0, ..., start.(n—1) happen in the correct cyclic
order. The third is deadlock-freedom.

For the first property, we can define a process speci-
fying alternation of start and finish for each cell:

ALT; = start.i — finish.t — ALT;

and combine them in parallel to produce a specifica-
tion for the scheduler as a whole.

ALTSPEC = ||9st<r ALT:

{start.i,finish.i} l

In this parallel combination the alphabets are all dis-
joint, and no synchronisation is required. It is simply
an independent parallel combination of the ALT pro-
cesses.

The specification
ALTSPEC Ty SCHED

can be checked with FDR.
For the second property, define

CYCLE; = start.i — CYCLF;; (0< i< n)
and specify

CYCLEy E SCHED \ {finish.i | 0 <1 < n}.
NS /
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<& Traces and Choice &

Which traces can be produced by P O () and P I
Q)7 We know that P O () can do the first event of
either P or (), and then behave like the remainder of
P or (). Therefore any trace of either P or () can
be produced by P O (), and we have

traces(P O Q) = traces(P) U traces(Q).

P M () always does 7 first, and then behaves like
either P or (). Because 7 does not appear in traces,
we also have

traces(P M Q) = traces(P) U traces(Q).

We have previously considered trace equivalence, writ-
ten P =7 (), as a definition of when two processes
should be considered equal or interchangeable. How-
ever, we can now see that P O () = P M @,
even though internal and external choice have been
designed to behave in different ways.

In general, trace equivalence is not suitable as a def-
inition of process equivalence.
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Before we introduced M and O all processes were de-
terministic — the internal state was always deter-
mined by the observable events. For deterministic
processes, traces are all we need to know, and trace
equivalence is adequate. But the whole point of in-
troducing the 'l operator was so that a process could
make an internal state change without doing anything
observable. Similarly, if P and () have a common
event a available at the first step, then observation
of the event a from P O () does not tell us what the
internal state has become.

We will now try to say exactly what the difference
between P 11 () and P O () is, and develop a new
notion of process equivalence accordingly.
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<& Refusals ©

Suppose we have the following definitions.
P=a—P
Q=0—>0Q

What happens if we put each of P O () and P I ()
in an environment consisting of P? i.e. if we look at

(P = Q) {a,b}”{a,b} P and (P i Q) {a,b}H{a,b} P.

First, we have P O Q—Q»P
and P——P

SO

a

(P - Q) {a,b}”{a,b} P
Also,

P {a,b}“{a,b} P.

P {a,b}“{a,b} P P {a,b}”{a,b} P

SO
P {a,b}“{a,b} pP=r
(they both satisfy the same recursive definition).
So
<P = Q) {a,b}H{a,b} P=a—=P
e
(P B Q) {a,b}”{a,b} P=P.
\_ J
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On the other hand,

(P1Q) tanyllun P

and

(P11Q) tunyllan P

T

P {a,b}“{a,b} P

T

Q {a,b}“{a,b} P

SO

(P Q) qunllian P =

(P onyllany P) (@ ropylliary P)-

(This is a loose statement as we haven’t decided what

1] n

=" means yet.)

We knOW that P {a,b}”{a,b} P = P
and Q {a,b}”{a,b} P — STOP
So

This shows that P O () and P M () behave differ-

ently when put in parallel with P. One is just P,
the other can internally choose to deadlock (become

STOP).

We can use this observation to develop a general
approach to distinguishing between nondeterministic
processes. We will consider putting a process P in
an environment (), where the alphabets of P and ()
are the same, i.e. constructing P a(p)Ha(P) Q.

\_
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Let X be a set of events which are offered initially by
(). If it is possible for P a(P)Ha(P) () to deadlock at
the first step, then we say that X is a refusal of P.
The set of all refusals of P is obtained by considering
all possible sets X which could be initial event sets

of ().
Examples:

1. The empty set is a refusal of every process, because

if ) = STOP then P p\|l,p) @ = STOP.
2. Any set of events X is a refusal of STOP.

3. If a ¢ X then X is a refusal of a — P. So if
a(P) = {a, b, ¢} then the refusals of a — P are {},
{b}, {c} and {b, c}. Processes () causing

(CL — P) {a,b,c}”{a,b,c} Q

to deadlock include STOP, b — STOP, ¢ = a —
STOP, (b — STOP) O (¢ — ¢ = STOP), etc.

4. The refusals of (a — ¢ — STOP) O (b —
STOP) are {} and {c}.

5. The refusals of (¢ — ¢ — STOP) M (b —
STOP) are {}, {a}, {b}, {c}, {a,c} and {b, c}.
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We can define

refusals(P) = {X | X C a(P) and
X is a refusal of P}.

Note that refusals(P) is a set of sets of events. For
example,

refusals((a — STOP) M (b — STOP)) =
i a), {0}, 1ct,{a, ¢}, 1b, i}

In the examples we saw that

refusals((a — STOP) O (b — STOP)) #
refusals((a — STOP) M (b — STOP)).

In general, refusals(P O Q) # refusals(P M @Q),
and this will be the basis for a new definition of pro-
cess equality which allows us to distinguish between
internal and external choice.

We can now define refusals for processes defined in
terms of the operators we have seen so far.

refusals(STOP) ={X | X C X}

where Y is the set of all events being considered —
the universal set of events.

refusals(a — P) ={X | X C (a(P) —{a})}

Both of these definitions are subsumed by the defini-
tion for menu choice: if P =z : A — P(x) then

refusals(P) ={X | X C (a(P)— A)}
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If P can refuse X then sowill P 1 @ if P is selected.
Similarly every refusal of () is a possible refusal of

PMQ.
refusals(P M Q) = refusals(P) U refusals( Q)

P O () can only refuse X if both P and () can refuse
X.

refusals(P O Q) = refusals(P) N refusals( Q)

P 4|5 @ can refuse all events refused by P and all
events refused by ().

refusals(P ,||z @) = {X UY | X € refusals(P)
and Y € refusals(Q)}

Refusals allow us to distinguish formally between de-
terministic and nondeterministic processes. If a pro-
cess is deterministic then it can never refuse any event
which it could possibly do. In other words, if P is de-
terministic and a is a possible initial event for P, then
a does not appear in any refusal set of P.

Writing initials(P) for the set of possible initial events
of P (so initials(P) = {x | (x) € traces(P)}), we
can say that if P is deterministic then
refusals(P) = {X | X C a(P) and
X Ninatials(P) = {}}.
Determinism means that any event which is possible
cannot be taken away by an internal state transition.

\
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Examples: |If
P=a—c¢c— STOP|b— STOP
then initials(P) = {a, b} and refusals(P) = {{},{c}}.
If
P =(a—c— STOP)M (b — STOP)
then initials(P) = {a, b} and (as before)
refusals(P) = {{},{a}, {0}, {c},{a, c}, {0, c}}.
Although a is a possible initial event for P, P could

also internally choose to be b — STOP which re-
fuses a.

To define nondeterminism properly, we need to con-
sider events refused not just at the first step, but after
any sequence of events. For example,

(a = b— STOP) O (a — ¢ — STOP)

is nondeterministic, but this does not become appar-
ent until after the first event.

So: P is deterministic if and only if
Vitr € traces(P) o
(refusals(P/tr) =
{X Ca(P) | X Ninitials(P/tr) = {}}).

P/tr is the process whose behaviour is whatever P
could do after the trace ¢r.
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<& Failure Equivalence &

A first attempt at a new definition of process equiv-
alence might be to define P =, () as

traces(P) = traces(Q)
refusals(P) = refusals( Q)

but this is not quite what we want. It would make
a — (b — STOP) O (¢ — STOP))

and
a — ((b = STOP) M (¢ — STOP))

equivalent, which is no better than using trace equiv-
alence. The problem is that looking at refusals can
only detect differences at the first step. As with the
definition of determinism, we need to look at events
refused after arbitrary traces have been observed.

The solution is to define failures(P) as follows:

failures(P) = {(tr, X) | tr € traces(P)
and X € refusals(P/tr)}

and then say that P =p () means

traces(P) = traces(Q)
and

failures(P) = failures( Q).

\_
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<& Examples &

P=a—b— STOP
a(P)=1{a,b}

failures(P) = {

(0,2), (0, {})
(), 2), ({a),{a})
((a,5),2), ({a, ), {a})
((a,8), {b}), ((a,B), {a, )}

SRV

o)

b

D)@ {ah {0}, {a,0)
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& Examples (ctd) ©

P=a— STOP | b— STOP

a(P)=1{a,b}
failures(P) = {({),9)}
U{({a), X) | X C{a,b}
U{((0), X) | X C {a, b}
%)
a b

@,1a5,1b},{a,b}y  2,{a},{b},{a, b}
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& Examples (ctd) ©
P=a— STOP|b— P
a(P)=1{a,b}
failures(P) = {((b)", @) | n > 0}
U{({8)" ™ {a), X) | n=0A
X C{a,b}}
J
b
Z,1a1,{b},1a, b}
N /
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& Examples (ctd) ©

P=a—b—STOPT1b— STOP

@,1b} a,1a}
T
7,10}
b

S

)

F,1a},1b},{a, b}

)

@, {a},{b},{a, b}
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& Examples (ctd) ©

P=a—b— STOPOqq— STOP

Z,1b}

2, {a} ()

, @,1a},1b},{a,b}

)

@, {a},{b},{a, b}
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Recall that {} € refusals(P) for every process P.

This means that for every process P and every trace
tr € traces(P), (tr,{}) € failures(P). So traces
can be recovered from failures by

traces(P) = {tr | (tr,{}) € failures(P)}.

This means that if failures(P) = failures( Q) then
traces(P) = traces(Q), so the definition of failure
equivalence can be simplified to

failures(P) = failures( Q).

If P is deterministic, we can analyse failures(P)
slightly more.

failures(P)
= {(tr, X) | tr € traces(P) and X € refusals(P/
= {(tr, X) | tr € traces(P)
and X N initials(P/tr) = {}}
= {(tr, X) | tr € traces(P)
and X N{z | s (x) € traces(P)} = {}}

which shows that failures(P) can be defined in terms
of traces(P).

~=

So if P and @) are deterministic, and traces(P) =
traces( @), then failures(P) = failures( Q).

Any process defined using just STOP, prefixing, menu
choice (or |), || and guarded recursion, is determinis-
tic.

J
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<& Failure Refinement <&

Failure refinement is defined in a similar way to trace
refinement.

PLCp@Q
if and only if

failures(Q) C failures(P)

It is pronounced “P is failure refined by Q)".

To see how failure refinement can be used in specifi-
cations, consider a very simple example: the process

SPEC =a — b — SPEC

Recall that if we use SPEC as a specification with
trace refinement, we get a safety specification. Pro-
cesses P satisfying the specification

SPEC Cp P
include
P = STOP
P =a— STOP
P=a—(b—-P0Ob— STOP)

P=aa—-b—P

What is the effect of specifying
SPEC Cp P?

J
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We need to calculate failures(SPEC). In words first:

the traces of SPE(C' are alternating sequences of a
and b events, starting with a. After a trace ending in
a, SPEC refuses the sets @ and {a}. After a trace
ending in b, it refuses the sets @ and {b}. So:

failures(SPEC) = {({a,b)" " (a),2) | n > 0}

U {({a, 0)" " (a),{a}) [ n > 0}
U {({a, 0)",2) [ n = 0}
U {({a, 0)",{b}) | n = 0}.

To determine whether SPEC Ty STOP we need to

calculate that

failures(STOP) = {({), 2), (), 1a}), (), {0}),
(():1a,0})}

and then we can see that the failure pairs ({),{a})

and ((),{a, b}) are in failures(STOP) but not in
failures(SPEC'). Therefore it is not the case that
SPEC Cpr STOP. We could also write this as

SPEC Ly STOP.
Now look at P = a — STOP.

failures(a — STOP) = 1((),9), (();1b}), ({a), D),
({a);{a}), ({a),{b}),
({a),{a,b});

The failure pairs ({a),{b}) and ({a),{a,b}) are in

failures(P) but not in failures(SPEC'), so again

SPEC Zy P.
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<& Exercise ©

If we define P =a — (b - P Ob— STOP), is
it true that SPEC Ty P 7 Either show that all the
failure pairs of P are also failure pairs of SPEC, or
find a failure pair of P which is not a failure pair of

SPEC.

<& Liveness <&

SPEC Cpgr P is a liveness specification which re-
quires P to do certain events. Which definitions of
P satisfy the specification? Obviously

P=a—b— P

does, because that is the same process as SPEC.
In fact this is the only process satisfying this specifi-
cation. So in this example, the specification is very
restrictive indeed: it pins down the implementation
precisely.
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& Safety and Liveness <

Saying that tr € traces(P) is a positive statement:
it describes something that P can do. A specification
of the form

SPEC Er P

puts a limit on the traces that P can do, so it is a
specification which restricts behaviour.

Saying that (tr, X') € failures(P) is a negative state-
ment: it describes something that P cannot do. A
specification of the form

SPEC' Cp P

puts a limit on what P can fail to do, so it requires
P to accept at least a certain range of behaviours.

Alternatively: P fails a safety (trace) specification by
doing too much. P fails a liveness (failure) specifica-
tion by refusing too much, i.e. by not doing enough.

<& Another Example <

Process P will have alphabet {a, b, ¢}, and we want
to specify that P must be able to do an infinite se-
quence of alternating a and b events, starting with
a; we do not care when ¢ events occur.
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We can use the process
ALT =a — b — ALT

as a specification for the a and b events, as before.

To allow the ¢ events to occur freely we use hiding,

and express the specification as

ALT Cp (P \ {c})

Definitions of P satisfying this specification include
P=a—-b—P
P=c—>a—c—c—b—P
P=a—=b—=>c—P
P=a—2c—>b—>a—>b0—>P

because in each case, P \ {c} is the same process

as ALT.

Definitions of P not satisfying the specification in-

clude

QQ =c—b—>0

P=a—-(b—-POb— Q)

P=a—b—>(POa—c— STOP).
-
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& Level Crossing Liveness <

In our model of the level crossing, there is an infinite
stream of cars trying to cross, and also an infinite
stream of trains. We can specify liveness (the re-
quirement that whenever a car approaches it should
eventually be allowed to cross, and similarly for the
trains) as follows.

CARSPEC = car.approach — car.enter —

car.leave — CARSPEC
TRAINSPEC = train.approach — train.enter —
train.leave — TRAINSPEC

The specifications are

CARSPEC Cr (SAFE_SYSTEM \ {train, gate})

TRAINSPEC Cp (SAFE_SYSTEM \ {car, gate}
(all the gate.?”?? events are hidden, etc.)

These specifications can be checked using FDR.
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<& Scheduler Liveness &

A liveness specification for the cyclic scheduler is that
the processes continue to be started, in turn, forever.
This can be written

CYCLEy Cp (SCHED \ {finish})

where CYCLE, is the process which was used for
the safety specification, and all the finish.i events

are hidden. This specification can be checked with
FDR.

Another liveness specification might be to pick a par-
ticular process ¢ and specify that start.: and finish.1
keep happening alternately forever. This can be done
with a specification process in which start.: and finish.:

alternate, by hiding all the other start and finish
events in SCHED.
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