
�

�

�

��� ��Credits c�Gay�Schneider �

� Credits �

These slides� together with accompanying practical
coursework� were originally produced by Simon Gay
for an introductory course on CSP taught in the De�
partment of Computer Science� at Royal Holloway�
University of London� Some adaptations have been
introduced by Steve Schneider�

This material has been made publically available to
accompany Chapters ��� of the book

Concurrent and Real Time Systems�
the CSP approach
by Steve Schneider
published by John Wiley�

Copies of these slides and the practical coursework�
may be found at the book�s web site�

http���www�cs�rhbnc�ac�uk�concurrency

If you have any comments or questions about any of
this material� please contact

S�Gay�rhbnc�ac�uk

S�Schneider�rhbnc�ac�uk



�

�

�

��� ��Concurrent and Real Time Systems� Introduction c�Gay�Schneider �

� What�s it all about� �

Concurrent systems � made up of independent but
communicating components � are all around us� Fa�
miliar examples include�

� The network of bank cash machines

� The internet

� The network of 	Switch
 machines

� The components of a PC

� The telephone system

Understanding� designing and building concurrent sys�
tems is a major challenge for computer science� The
problems involved are in a di�erent league from the
problems of sequential programming� and a system�
atic approach is essential�

This course aims to equip you with some of the the�
ory� tools and techniques needed to understand and
analyse concurrent systems� and to enable you to take
a systematic approach to designing your own�



�

�

�

��� ��Concurrent and Real Time Systems� Introduction c�Gay�Schneider �

� CSP �

We will learn CSP �Communicating Sequential Pro�
cesses
� which is a theoretical notation or language
for modelling concurrent systems� CSP is supported
by various software tools which enable systems to be
analysed and debugged� and we will use two in partic�
ular � ProBE and FDR � to assist in learning CSP
and also to perform analyses of the systems which we
consider�

CSP is a language which allows concurrent systems
to be described in a more fundamental and abstract
way� It was devised by C� A� R� Hoare� and developed
at the University of Oxford during the ����s�

CSP describes processes � objects or entities which
exist independently� but may communicate� During
its lifetime� a process may perform �engage in� do

various events or actions� These events are the visi�
ble parts of the behaviour of the process� In di�erent
systems� events correspond to di�erent physical ac�
tivities� but CSP treats them in a uniform way� As we
will see� various styles of inter�process communication
can be built up from the idea of events�



�

�

�

��� ��Concurrent and Real Time Systems� Sequential Processes c�Gay�Schneider �

� Processes and Events �

Example� When describing a simple vending ma�
chine� which sells chocolates� we may be interested in
the events coin� representing insertion of a coin into
the machine� and choc� representing the appearance
of a chocolate�

Example� To describe a more complex vending ma�
chine� which sells two sizes of chocolate and gives
change� we might need the events in the set

fin�p� in�p� small � large� out�pg�

Notice that we make no distinction between events
caused by the machine and events caused by the user
of the machine� We will see later how to represent
the machine and the user as separate processes�

The set of events which a process may use is called
its alphabet or interface� The alphabet of a process
P is written ��P��

Example� To describe a lecture as a process LECT �
we might decide that

��LECT � � fstart � end � exerciseg�



�

�

�

��� ��Concurrent and Real Time Systems� Sequential Processes c�Gay�Schneider �

� Events and Interfaces �

During the lifetime of a process� each event in the
interface may occur once� many times� or not at all�

Which events we decide to include in the interface of a
process depends on which aspects of its behaviour we
are interested in� If we only care about the beginnings
and ends of lectures� we might decide that

��LECT � � fstart � endg�

For the moment� we will not normally de�ne the inter�
face of a process separately� it will be de�ned implic�
itly by the events which appear in the process def�
inition� Later it will become important to specify
interfaces in advance�

� Process Behaviour �

The simplest possible behaviour is to do nothing� The
process which does nothing is written STOP �

The simplest way of constructing non�trivial processes
is by means of pre�xing� which allows events to occur
in sequence� If P is a process and a is an event� then

a � P

is a process which can perform the event a and then
behave like the process P �



�

�

�

��� ��Concurrent and Real Time Systems� Sequential Processes c�Gay�Schneider �

Example� De�ning

VM � coin � STOP

gives a vending machine which accepts a coin but
then does nothing else�

VM � coin � �choc � STOP�

gives a machine which works� but only once�

VM � STOP

is a broken machine which cannot even accept a coin�

The expressions P � Q and a � b� where P �Q
are processes and a� b are events� are not allowed�
Pre�xing is only used with an event and a process�
In expressions such as a � �b � P�� the brackets
are usually omitted�

When we de�ne a CSP process� we are only describing
the relative order of events� nothing is said about
timing� It is not possible for two or more events to
occur simultaneously�

Example� If LECT � start � end � STOP

then we have captured the fact that a lecture begins
and ends� but not the fact that a set time elapses in
between�



�

�

�

��� ��Concurrent and Real Time Systems� Sequential Processes c�Gay�Schneider �

� Recursion �

Using STOP and pre�xing we can only construct
processes which must stop after a �nite number of
events� Very often we are interested in processes
which run forever� To describe them we need re�
cursive de�nitions�

Example� To describe a clock� we are only interested
in the fact that it ticks� so we just need one event
tick � We can de�ne

CLOCK � tick � CLOCK �

The process CLOCK can perform the tick event
repeatedly� Substituting for CLOCK on the right
hand side of the de�nition gives

CLOCK � tick � tick � CLOCK

� tick � tick � tick � � �

Example� We can de�ne a vending machine which
does not stop after one transaction�

VM � coin � choc � VM



�

�

�

��� ��Concurrent and Real Time Systems� Sequential Processes c�Gay�Schneider 	

�What is the di�erence between the recursive def�
initions we have seen so far� and a typical recur�
sively de�ned function in C�� or ML�

In CSP we can de�ne a collection of processes by
mutual recursion� such as

VM � coin � VM PAID

VM PAID � choc � VM �

Example� If we de�ne

LECT � start � INLECT

INLECT � exercise � INLECT

then we have a never�ending lecture in which you
can�t even go to sleep�



�

�

�

��� ��Concurrent and Real Time Systems� Sequential Processes c�Gay�Schneider 


� Choice �

So far we have only de�ned processes which perform
a single sequence of events� either just once or re�
peatedly� We also want to describe systems which
may have alternative behaviours� perhaps determined
by their environment�

If P � Q are processes and x � y are distinct events�
then

x � P j y � Q

is a process which can either do the event x and then
behave like P � or do the event y and then behave like
Q �

This is pronounced 	x then P choice y then Q
� or
sometimes 	x then P or y then Q


Example� A ticket machine sells tickets to Staines�
for one pound� or Ashford� for two pounds� We can
describe it as a process TICKET � with interface
fstaines� ashford � pound � ticketg�

TICKET �
staines � pound � ticket � STOP

j ashford � pound � pound � ticket � STOP



�

�

�

��� ��Concurrent and Real Time Systems� Sequential Processes c�Gay�Schneider �

We can combine choice with recursion� for example
to de�ne a more useful ticket machine�

TICKETS �
staines � pound � ticket � TICKETS

j ashford � pound � pound � ticket � TICKETS

Some choices in a recursive process may lead to ter�
mination�

TICKETS �
staines � pound � ticket � TICKETS

j ashford � pound � pound � ticket � STOP

We can also de�ne choices with more than two alter�
natives�

x � P j y � Q j � � � j z � R�

Note that we cannot write P j Q for processes P and
Q � We can only use j in conjunction with a collection
of distinct pre�xes� This is to ensure that situations
such as x � P j x � Q cannot arise�

Example� Suppose the ticket machine needs to be
turned on before use� and can be turned o� after any
transaction�

MACHINE � on � TICKETS

TICKETS �
staines � pound � ticket � TICKETS

j ashford � pound � pound � ticket � TICKETS

j o� � MACHINE



�

�

�

��� ��Concurrent and Real Time Systems� Sequential Processes c�Gay�Schneider ��

Suppose we want to model a lecture as a process
LECT with alphabet fstart � end � exerciseg� as be�
fore�

�De�ne LECT so that a lecture starts� may con�
tain any number of exercises� and may eventually
end�

We can model the career of an undergraduate as a
process STUDENT with alphabet

fyear�� year�� year�� pass� graduateg�

A simple de�nition of an ideal degree programme is

STUDENT � year� � pass � year� � pass �

year� � pass � graduate � STOP �

�Add an event fail to the alphabet of STUDENT �
and modify the de�nition so that a student can fail
at any point and repeat a year�

When discussing choice� we have ignored the question
of how a choice is made � we have simply listed al�
ternative possibilities� Later we will be able to distin�
guish between choices made by a process and choices
made by the environment in which it is placed�



�

�

�

��� ��Concurrent and Real Time Systems� Sequential Processes c�Gay�Schneider ��

� Menu Choice �

There is another notation for choice� known as menu

choice� If A is a set of events� and for each event x
in A there is a process P�x �� then

x � A� P�x �

�pronounced 	x from A then P of x

 is a process
which can do any of the events in A and then become
the appropriate P�x ��

Example� Suppose we de�ne a collection of pro�
cesses with alphabet N �

COUNTDOWN� � � � STOP

COUNTDOWN� � � � COUNTDOWN�
���

COUNTDOWNn � n � COUNTDOWNn��
���

we can then de�ne

COUNTDOWN � x � N � COUNTDOWNx

which allows the starting point of the countdown to
be chosen�

Think of this de�nition as

x � N � P�x �

where� for each x � N � P�x � � COUNTDOWNx �



�

�

�

��� ��Concurrent and Real Time Systems� Sequential Processes c�Gay�Schneider ��

Menu choice subsumes all the operations we have
seen so far� The choice

a� � P� j a� � P� j � � � j an � Pn

can be written

x � A� P�x �

where A � fa�� � � � � ang and for each i � P�ai� � Pi �

The pre�xing construction

a � P

can be written

x � A� P�x �

where A � fag and P�a� � P � STOP can be
written

x � fg � P�x �

where no de�nition for P�x � needs to be supplied�

It will sometimes be useful to think of STOP � pre�x�
ing and choice in this way� as special cases of menu
choice�



�

�

�

��� ��Concurrent and Real Time Systems� Sequential Processes c�Gay�Schneider ��

� Transition Diagrams �

It is sometimes useful to view processes pictorially�
For example� the process coin � choc � STOP

can be represented by this diagram�

coin choc

Such diagrams are called state transition diagrams

or just transition diagrams� Each circle represents
a state of the process� in this example� the states
are coin � choc � STOP � choc � STOP � and
STOP � Each arrow represents an event which the
process may do when in a certain state�

Choices are represented by multiple arrows �with dif�
ferent labels
 from a single state�

Example� The transition diagram for the process
TICKET is

pound

ashford

pound

pound

ticket

staines

ticket

A state with no arrows leaving it corresponds to STOP �



�

�

�

��� ��Concurrent and Real Time Systems� Sequential Processes c�Gay�Schneider ��

The transition diagram for a recursive process is cyclic�
For example�

VM � coin � choc � VM

has this diagram�

choc

coin

A larger example� the process MACHINE �

pound

on o�

pound

pound

ashford

ticket

staines

ticket



�

�

�

��� ��Concurrent and Real Time Systems� Sequential Processes c�Gay�Schneider ��

Problems with transition diagrams include�

� Very large diagrams are hard to draw �and some
processes have an in�nite number of states� which
is even worse
�

� Di�erent diagrams can be drawn for the same pro�
cess� For example� VM also corresponds to the
following diagram�

coin

coin

chocchoc

Later we will introduce a mathematical theory of pro�
cess equivalence� with a collection of algebraic laws�

However� it is still useful to talk about process states
and transitions� as a way of de�ning process opera�
tors�



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

� Interaction �

Up to now we have described simple processes in iso�
lation� Although we have often assumed that our
processes might be placed in some environment and
expected to interact with it � for example� there
should be a customer who will use the ticket machine
� this environment has not been made explicit�

We will now see how to take two �or more
 processes
and force them to interact with each other� Interac�
tion between two processes means that they simul�
taneously perform events� an event thus becomes a
joint activity in which two �or more
 processes may
participate�

When placing processes in parallel so that they can
interact� it is important to specify which events they
are supposed to be interacting on� or sharing� This is
where alphabets �interfaces
 come into play�

If the interfaces of processes P and Q are A and B
respectively� then the process

P AkB Q

is a parallel combination of P and Q �



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider �	

In this combination� P can only perform events in A�
Q can only perform events in B � and any events in
the intersection of A and B require synchronisation
between P and Q �

The interface of P should contain at least all the
events used in the de�nition of P � and similarly for
the interface of Q �

Example� Consider processes representing a vending
machine� and a customer�

VM � coin � �choc � STOP j to�ee � STOP�

CUST � coin � choc � STOP

��VM � � ��CUST � � fcoin� choc� to�eeg � A�

The process VM AkA CUST models the interaction
of the customer with the machine� How does it be�
have� Any event done by VM AkA CUST must be
an event which is done simultaneously by both VM
and CUST �

At the �rst step� both VM and CUST can do the
event coin� We therefore expect VM AkA CUST to
do coin� Subsequently� VM and CUST enter new
states which continue to interact�



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider �


After the event coin� VM becomes

choc � STOP j to�ee � STOP

and CUST becomes

choc � STOP �

Synchronisation is still required for all events� and
therefore only choc can happen� The choice between
choc and to�ee in VM is resolved in favour of choc�

After the event choc� both processes become STOP �
so the system becomes STOP AkA STOP � which
cannot do anything else�

We can draw a transition diagram forVM AkA CUST �

VM AkA CUST

�choc � STOP j to�ee � STOP� AkA choc � STOP

coin

�

STOP AkA STOP

choc

�



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

In this example� both VM and CUST continued to
the end of their potential behaviour� This may not
happen in general� if we change the de�nition to

CUST � coin � STOP

then after the event coin we get

�choc � STOP j to�ee � STOP� AkA STOP

and nothing further can happen� Although one of
the processes could do either choc or to�ee� both of
these events require synchronisation with the other
process� but because STOP cannot do anything� syn�
chronisation is not possible�

Example� Recall the de�nition of STUDENT �

STUDENT � year� � �pass � YEAR�
j fail � STUDENT �

YEAR� � year� � �pass � YEAR�
j fail � YEAR��

YEAR� � year� � �pass � graduate

� STOP

j fail � YEAR��

We will now explicitly state that the alphabet is

��STUDENT � � fyear�� year�� year��
pass� fail � graduateg

which we will abbreviate to S �



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

Suppose that the student has a generous parent� who
buys a present every time the student passes the ex�
ams�

PARENT � pass � present � PARENT

Again we explicitly de�ne the alphabet�

��PARENT � � fpass� presentg � P �

Notice that the event pass now has two di�erent in�
terpretations� For the student it means passing the
exams� but for the parent it means seeing the student
pass the exams�

We can now consider the parallel combination of the
student and the parent�

STUDENT SkP PARENT �

Synchronisation is required for the event pass � which
is the only event in both alphabets� The other events
can happen independently�

The behaviour of this system will be explored in Prac�
tical Sheet ��



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

� More Processes �

Any number of processes can be put in parallel� by
using the k operator repeatedly�

Example� Suppose the student has a tutor who is
annoyed by failure�

TUTOR � fail � shout � TUTOR

��TUTOR� � ffail � shoutg � T

We can add the tutor to the system consisting of the
student and the parent�

�STUDENT SkP PARENT � S�PkT TUTOR

As before� pass must be synchronised between STUDENT
and PARENT � Also� fail �which is the only event
in both S �P and T 
 must be synchronised between
STUDENT SkP PARENT and TUTOR�

We know that fail events come from STUDENT

not PARENT � so in e�ect this means that pass
must be synchronised between STUDENT and PARENT �
and fail must be synchronised between STUDENT
and TUTOR�



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

� More Synchronisation �

Some parallel combinations require some events to be
synchronised between more than two processes�

Example� If a student completes the degree pro�
gramme without failing at all� then the college awards
a prize�

COLLEGE � fail � STOP j pass � C �
C � � fail � STOP j pass � C �
C � � fail � STOP j pass �

prize � STOP

��COLLEGE � � fpass� fail � prizeg � C

Now we can consider combinations of STUDENT
with any or all of PARENT � TUTOR andCOLLEGE �
If we combine everything�

��STUDENT SkP PARENT � S�PkT TUTOR�

S�P�TkC COLLEGE

then pass must be synchronised between STUDENT �
PARENT and COLLEGE � and so on�



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

Consider the processes PASS �	passenger

 and
TICKETS � both with alphabet

A � fashford � staines� feltham� ticket � poundg

de�ned by

PASS � ashford � pound �

�ticket � PASS

j pound � ticket � PASS �

j feltham � pound � ticket � STOP

TICKETS � staines � pound �

ticket � TICKETS

� ashford � pound � pound �

ticket � TICKETS

�What is the behaviour of TICKETS AkA PASS�
Draw a transition diagram�

Given a transition diagram� it is possible to de�ne
a process� without using the parallel operator� which
has the same transition diagram�

�Do this for TICKETS AkA PASS �



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

� Student and Parent �

The student and the parent� in parallel� behave more
or less as we expected� The only slight surprise is
that after the student has passed an exam� present
and the next year can happen in either order� The
transition diagram contains two squares� which are
characteristic of a pair of events which must both
happen but in either order�

If processes P and Q are completely independent
�there are no events which are in both alphabets

then the number of states of P AkB Q is the prod�
uct of the number of states of P and the number
of states of Q � However� if the processes must syn�
chronise on some events� this is no longer true� For
example� STUDENT has � states and PARENT

has � states� but their parallel combination has only
�	 states� Because pass cannot happen until after
year�� PARENT cannot get into its second state
while STUDENT is still in its �rst state�

Any process can be rewritten in a form which does
not involve k� Try it for STUDENT SkP PARENT

� it becomes fairly complex� Roughly speaking� if P
has m states and Q has n states� then P AkB Q has
m�n states �although synchronisation might reduce
the number
�



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

If we de�ne a process R which has the same transition
diagram as P AkB Q but does not use k� then the
syntactic 	size
 of R will be m � n� However� the
syntactic size of P AkB Q is only m 
 n� De�ning a
system as a parallel combination of several processes
is very compact� and is closer to the way we think
about it�

� Prizes �

Recall the parallel combination of STUDENT � PARENT
and COLLEGE � If the student passes every year�
then the system works as we intended and eventu�
ally COLLEGE does prize� However� if fail hap�
pens� then COLLEGE becomes STOP and cannot
do anything else afterwards� This causes a problem
because pass and fail must still be synchronised� and
therefore STUDENT can no longer either pass or fail
� the whole system stops�

We need to change the de�nition of COLLEGE so
that after fail it can still do pass or fail � but never
do prize�

�Write down the new de�nition of COLLEGE �



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

� Operational Semantics �

The semantics of a programming language is a de�ni�
tion of what expressions in the language �either com�
plete programs or program fragments
 mean� One
style of semantics is operational � the meaning of
program expressions is de�ned by describing how they
should be executed� An operational semantics can be
thought of as an idealised implementation� or as in�
structions to an implementor�

In CSP� we are interested in the events which a pro�
cess may perform� and we have informally introduced
the operators by describing when processes can do
certain events� We will now introduce the idea of
labelled transitions as the basis of the operational se�
mantics of CSP� Labelled transitions allow us to de�
�ne CSP operators more formally� they contain the
same information as transition diagrams� but in a
more manageable form�

A labelled transition has the form

P
e
�Q

where P and Q are processes and e is an event� It
captures the idea that P can change state to Q by
doing the event e�



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider �	

Example� The execution of the process

coin � choc � STOP

can be described by the labelled transitions�

�coin � choc � STOP�
coin

� �choc � STOP�

�choc � STOP�
choc

�STOP

When de�ning CSP operators� we will use labelled
transitions to precisely describe the possible behaviour
of the processes being de�ned� We use inference rules
of the form

hypothesis � � � � hypothesis n �side condition�
conclusion

In such a rule� the hypotheses are usually labelled
transitions of certain processes� the conclusion is a la�
belled transition of a process being de�ned by means
of a new operator� Some rules have a side condition�
which is an extra condition necessary for the rule to
be applicable� We will often refer to these rules as
transition rules�

The rule for pre�xing is

�a � P�
a
�P

There are no hypotheses� which means that we al�

ways know that �a � P�
a
�P � This is true for all

processes P � and all events a�



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider �


There is no transition rule for STOP � This means
that it is never possible to deduce a transition for
STOP � which is exactly what we want�

To de�ne choice �from a �nite number of alterna�
tives
 we use one rule for each possible initial event�
For example� the process a � P j b � Q is de�ned
by the following pair of rules�

a � P j b � Q
a
�P

a � P j b � Q
b
�Q

For menu choice we use this rule�
�a � A�

x � A� P�x �
a
�P�a�

The side condition a � A indicates that the rule
only applies to events in the speci�ed set A of initial
possibilities�

Notation� the use of x in the process x � A� P�x �
suggests a general� as yet undetermined event� The
use of a for the event labelling the transition repre�
sents a particular event� This usage follows the com�
mon mathematical convention of using letters close
to the end of the alphabet as variables� and letters
close to the beginning of the alphabet as constants�



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

When a named process is de�ned� we should be able
to replace the name by its de�nition wherever it is
used� The transition rule for named processes states
that any transition of the right hand side of a de�ni�
tion is also a transition of the de�ned process�

P
e
�P �

�N � P �
N

e
�P �

Example� If we de�ne

DOOR � open � close � DOOR

then because we have

�open � close � DOOR�
open

� �close � DOOR�

we also have

DOOR
open

� �close � DOOR��

Then
�close � DOOR�

close
�DOOR

This is all the information we need about the be�
haviour of DOOR�

Note� the operational semantics of CSP appears in
	Concurrent and Real Time Systems� the CSP Ap�
proach
 and Roscoe�s 	Theory and Practice of Con�
currency
 but not in Hoare�s 	Communicating Se�
quential Processes
�



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

� Transitions for Concurrency �

Here are the transition rules for the concurrency op�
erator�

P
a
�P �

�a � A� a �� B �
P AkB Q

a
�P �

AkB Q

Q
a
�Q �

�a � B � a �� A�
P AkB Q

a
�P AkB Q �

P
a
�P � Q

a
�Q �

�a � A � B �
P AkB Q

a
�P �

AkB Q �

� Examples �

Example� Processes VM and CUST with

��VM � � fcoin� choc� beepg � A

��CUST � � fcoin� choc� eatg � B

VM � coin � beep � choc � VM

CUST � coin � choc � eat � CUST �

In
VM fcoin�choc�beepgkfcoin�choc�eatg CUST

the events beep and eat happen independently� but
coin and choc require synchronisation�



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

VM AkB CUST

beep � choc � VM AkB choc � eat � CUST

coin

�

choc � VM AkB choc � eat � CUST

beep

�

VM AkB eat � CUST

choc

�

VM AkB CUST

eat

�



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

If we change CUST so that

��CUST � � fcoin� choc� shoutg � A

CUST � coin � shout � choc � CUST

then

VM AkB CUST
coin

�

beep � choc � VM AkB shout � choc �
CUST

and now beep and shout � neither of which requires
synchronisation� could happen in either order� Here
is the complete transition diagram�

coin

beep

shout

choc

shout

beep



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

Example� To describe the movement of a counter
on the board

we can de�ne two processes�

��LR� � fleft � rightg

��UD� � fup� downg

LR � left � right � LR j right � left � LR

UD � up � down � UD

and then

LR fleft �rightgkfup�downg UD

describes the whole system�

An alternative way of describing this system is to de�
�ne a collection of processes Rx �y representing the
behaviour when the counter starts from coordinate
position �x � y��

R��� � right � R��� j up � R���

R��� � right � R��� j down � R���

� � �

and then

R��� � LR fleft �rightgkfup�downg UD �



�

�

�

��� ��Concurrent and Real Time Systems� Concurrency c�Gay�Schneider ��

Because of the way synchronisation is needed for events
in both alphabets� it is possible to control or restrict
the behaviour of a process by adding another process
in parallel�

Example� Recall that with the most recent de�ni�
tions of VM and CUST � VM k CUST can do
beep and shout in either order� If we de�ne another
process CONTROL with

��CONTROL� � fbeep� shoutg � C

CONTROL � beep � shout � CONTROL

then

�VM AkB CUST � A�BkC CONTROL

behaves like the process P de�ned by

P � coin � beep � shout � choc � P �

This also illustrates the need to be careful about al�
phabets� if

��CONTROL� � fbeep� shout � coin� chocg � D

and CONTROL has the same de�nition� then

�VM AkB CUST � A�BkD CONTROL � STOP

because CONTROL cannot do a coin event�



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

� Traces �

A trace of a process is a �nite sequence of events� rep�
resenting the behaviour of the process up to a certain
point in time� Traces are written as comma�separated
sequences of events� enclosed in angle brackets� for
example� hcoin� choc� coini� This is a trace of the
recursive version of VM �

Example� hopen� closei and hopen� close� openi are
traces of DOOR�

�DOOR � open � close � DOOR


Example� hstaines� poundi and hashford � poundi
are traces of TICKET � and also of TICKETS �

We will only consider �nite traces�

The empty trace� containing no events� is written hi
and pronounced 	empty
 or 	nil
� It is a trace of
every process� corresponding to an observation when
no event has yet happened�

If a process is de�ned without recursion� then it has
a bound on the length of its traces� For example� if

PHONE � ring � answer � STOP

then the only traces of PHONE are hi� hringi and
hring � answeri�



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

A recursive process� which can keep performing events
forever� can have an in�nite set of traces� For exam�
ple� if

CLOCK � tick � CLOCK

then the traces of CLOCK are

hi� hticki� htick � ticki� htick � tick � ticki� � � �

It is important to be clear about the fact that we are
interested in potentially in�nite sets of �nite traces�

� Operations on Traces �

We will use various operations on traces� and a num�
ber of facts or laws about them� Most of the laws
are rather obvious�

� Concatenation �

The �rst operation is concatenation� also called cate�

nation� It joins traces together into longer traces�

ha�� � � � � amiahb�� � � � � bni � ha�� � � � � am� b�� � � � � bni�

Example� hcoin� chociahchoci � hcoin� choc� choci�
Concatenation is associative� and the empty trace is
a unit� i�e�

tr�
a �tr� a tr�� � �tr� a tr��a tr�

hia tr � tr � tr a hi



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider �	

The following laws are useful�

tr�
a tr� � tr�

a tr� if and only if tr� � tr�

tr�
a tr� � tr�

a tr� if and only if tr� � tr�

tr�
a tr� � hi if and only if tr� � hi and tr� � hi

If n is a positive integer� then trn is de�ned to be
n copies of the trace tr concatenated together� trn

can be de�ned recursively by

tr � � hi

trn�� � tr a trn�

� Functions on Traces �

Suppose f is a function which maps traces to traces�
f is said to be strict if f �hi� � hi� and distributive if

f �tr� a tr�� � f �tr��a f �tr���

In fact� any distributive function is strict� if f is dis�
tributive then

f �tr �a hi � f �tr � � f �tr a hi�

� f �tr �a f �hi�

and so f �hi� � hi�

If f is distributive then its action on traces can be
put together from its action on single�event traces�

f �ha�� � � � � ani� � f �ha�ia � � �a hani�

� f �ha�i�a � � �a f �hani��



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider �


� Restriction �

The expression tr�A denotes the trace tr when re�

stricted to events in the set A� tr�A consists of tr
with all events outside A omitted�

Example�

hstart � exercise� exercise� endi�fstart � endg
� hstart � endi�

hstart � exercise� exercise� endi�fstart � exerciseg
� hstart � exercise� exercisei�

Restriction is distributive and therefore strict�

hi�A � hi

�tr� a tr���A � �tr��A�a �tr��A��

The e�ect of restriction on single�event traces is clear�

hx i�A � hx i if x � A

hx i�A � hi if x �� A

Two other facts�

tr�fg � hi

�tr�A��B � tr��A � B�



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

� Head and Tail �

If tr is a non�empty trace� its �rst event is denoted
tr� and the trace consisting of all events after the
�rst is denoted tr ��

Neither hi� nor hi
� is de�ned�

Example� hcoin� choci� � coin�

hcoin� choci� � hchoci�

A few facts�

�hx ia tr �� � x

�hx ia tr �� � tr

tr � htr�ia tr �

� Star �

If A is a set of events� the set A� is the set of all
�nite traces� including hi� containing events from A�

Example�

fa� bg� � fhi� hai� hbi� ha� ai� ha� bi� hb� ai� hb� bi� � � �g



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

� Ordering �

A trace tr� is a pre�x of a trace tr� if there is some

extension tr� of tr� such that tr� a tr� � tr�� We
then write tr� � tr��

Example�

ha� b� ci � ha� b� c� di

hi � ha� bi

� Length �

The length of the trace tr is denoted 
tr �

Example� 
ha� bi � �� 
hi � ��

� Traces of a Process �

In general a process has many di�erent possible be�
haviours� and we do not know in advance which traces
will be generated by a particular execution� However�
we can determine in advance the set of all possible
traces of a process P � This set is written traces�P��

Examples� traces�STOP� � fhig�

traces�coin � STOP� � fhi� hcoinig�



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

traces�CLOCK � � fhi� hticki� htick � ticki� � � �g

� ftickg�

We can now systematically write down de�nitions of
traces�P� for processes P constructed from the op�
erators we have seen so far� We already know the
de�nition for STOP �

traces�STOP� � fhig�

traces�a � P� is constructed from traces�P� by the
addition of a as an initial event�

traces�a � P� � fhig�fhaiatr j tr � traces�P�g�

Notice the addition of the trace hi� which must always
be a trace of any process�

The de�nition of traces�a � P j b � Q� is similar�
taking account of the two possible �rst events�

traces�a � P j b � Q� � fhig

� fhaia tr j tr � traces�P�g

� fhbia tr j tr � traces�Q�g�

Also similarly� we can give a general de�nition of
traces�x � A� P�x ���

traces�x � A� P�x ��
� fhig

� fhaia tr j a � A� tr � traces�P�a��g�



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

A few facts about traces �

hi � traces�P�� for any P �

If tr� a tr� � traces�P� then tr� � traces�P��

traces�P� � ���P����

Describing the set of traces of a recursive process is
more complicated� Suppose we have the de�nition

X � F �X �

where F �X � is a guarded expression� Guardedness
means that we know at least the possible �rst events
of F �X �� In fact� they are the same as the possible
�rst events of F �STOP�� whatever X is�

Example� If X � a � X then we know that X
can do a �rst� and this is the same �rst event as in
a � STOP �

Depending on the form of F �X �� we may know more
than just the �rst event�

Example� If X � a � b � X j c � X we know
that X can either do a then b� or c� so we know that
ha� bi and hci are traces of X � They are also traces
of a � b � STOP j c � STOP �

We can discover some traces of X by looking at
F �STOP�� For the traces corresponding to running
through F twice� we need to look at F �F �STOP���



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

Example� If X � a � X we also have

X � a � a � X

so ha� ai is a trace of X �

If X � a � b � X j c � X we also have

X � a � b � �a � b � X j c � X �

j c � �a � b � X j c � X �

So ha� b� ai� ha� b� ci� hc� a� bi etc� are traces of X �

In general we can de�ne iteration of F �

F ��X � � X

F n���X � � F �F n�X ��

and then� for X � F �X �� we have

traces�X � �
�

n��

traces�F n�STOP��

� traces�STOP� � traces�F �STOP��

� traces�F �F �STOP��� � � � �

Writing down the set of traces of a recursive process
in a compact form is a little challenging� For example�
if X � a � b � X � then traces�X � contains
not only ha� bi� ha� b� a� bi� ha� bi� and so on� but
also the intermediate traces ending in a� One way to
describe traces�X � is�

traces�X � � ftr j for some n� tr � ha� bing



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

� Traces and Diagrams �

There is a connection between the transition diagram
of a process� and its traces� For example� recall the
process TICKETS de�ned by

MACHINE � on � TICKETS

TICKETS � staines � pound � ticket

� TICKETS

j ashford � pound � pound � ticket

� TICKETS

j o� � MACHINE

and its transition diagram�

o�
ashford

pound

pound

ticket

staines

ticket

pound

on

For any path through the diagram� starting from the
black state� there is a trace consisting of the sequence
of labels on the path� traces�TICKETS � is the set
of traces corresponding to all these paths�



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

� Traces and Transitions �

The operational semantics of CSP allows us to un�
wind the behaviour of a process� one event at a time�
Looking at the traces of a process gives us an overall
view� Since the traces can be extracted from a tran�
sition diagram� and labelled transitions are supposed
to capture the same information as the diagrams� we
should also be able to write down a relationship be�
tween a process� traces and its labelled transitions�
Here it is�

traces�P� � fhig

� fhaia tr j P
a
�Q � tr � traces�Q�g�

Later we will be de�ning new CSP operators� by means
of labelled transition rules� We will use this relation�
ship between transitions and traces to calculate the
traces of processes de�ned in terms of the new oper�
ators�

� Exercises �

�Write down traces�TICKET �� where TICKET
is de�ned as before by

TICKET � staines � pound � ticket � STOP

j ashford � pound � pound � ticket � STOP



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

� Exercises �

�De�ne a process P such that

traces�P� � fhi� hai� hbi� hb� cig�

�De�ne a process P such that ha� b� ci and ha� b� ai
are both traces of P �

� Is there a process P such that

traces�P� � fhi� hai� ha� bi� hc� dig�



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider �	

� Traces for Concurrency �

traces�P AkB Q� � ftr j tr � �A � B��

and tr�A � traces�P�

and tr�B � traces�Q�g

If A � B � this de�nition reduces to

traces�P AkA Q� � ftr j tr � A�

and tr�A � traces�P�

and tr�A � traces�Q�g

i�e� traces�P AkA Q� � traces�P� � traces�Q��
because if tr � A� then tr�A � tr � This �ts in with
the earlier discussion of concurrency with the same
alphabet�

If A � B � fg then every event in a possible trace
of P AkB Q is either an event from A or an event
from B � In a trace tr of P AkB Q � the events from
A �i�e� tr�A
 must form a trace of P � and similarly
the events from B must form a trace of Q � Any
pair of traces� one from P and one from Q � can be
interleaved to form a trace of P AkB Q �

Example� hleft � right � righti is a trace of LR and
hup� downi is a trace of UD � So

hleft � up� down� right � righti

is a trace of LR k UD �



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider �


In general� a trace of P and a trace of Q can be used
to form a trace of P AkB Q as long as the events in
A � B appear in the same order in both traces�

Example� hcoin� beep� choci is a trace of VM and
hcoin� shout � choci is a trace of CUST � The events
common to both alphabets �i�e� coin and choc
 ap�
pear in the same order in both traces�

hcoin� beep� shout � choci and hcoin� shout � beep� choci
are both traces of VM k CUST �



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

� Trace Equivalence �

We have spoken vaguely of processes being equivalent
to each other � for example� a process which can do
no events is equivalent to STOP � In CSP there are
in fact several notions of process equivalence� each
of which is useful in di�erent situations� The �rst is
trace equivalence� denoted by �T � and de�ned by

P �T Q

if and only if
traces�P� � traces�Q�

Two processes are trace equivalent if they have the
same observable behaviour� as measured by traces �

Example� Consider the process

a � STOP fa�bgkfa�bg b � STOP �

The de�nition of traces for a parallel combination of
processes gives
traces�a � STOP fa�bgkfa�bg b � STOP�

� ftr � fa� bg� j tr�fa� bg � traces�a � STOP�
and tr�fa� bg � traces�b � STOP�g�

i�e� traces�a � STOP fa�bgkfa�bg b � STOP�

� traces�a � STOP� � traces�b � STOP��



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

Because

traces�a � STOP� � fhi� haig

and
traces�b � STOP� � fhi� hbig

we get

traces�a � STOP fa�bgkfa�bg b � STOP� � fhig�

Therefore

a � STOP fa�bgkfa�bg b � STOP �T STOP �



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

� Re�nement and Speci�cation �

The re�nement relation vT on processes is de�ned
by

P vT Q

if and only if
traces�Q� � traces�P�

P vT Q is pronounced 	P is re�ned by Q
� The
subscript T indicates that we are working with traces
� later we will see other forms of re�nement�

P is re�ned by Q if Q exhibits at most the behaviour
exhibited by P � possibly less�

Example�

a � b � STOP vT a � STOP

Example� For any process P � P vT STOP �

The main use of re�nement is in speci�cation� If
we think of P as de�ning a range of permissible be�
haviour� then the statement P vT Q can be read as
the speci�cation that Q �s behaviour must stay within
this range�



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

� Example �

Recall the example of a counter moving on a board�

LR � left � right � LR � right � left � LR

UD � up � down � UD

SPEC � LR fleft �rightgkfup�downg UD

We can now interpret SPEC as a speci�cation for
processes which might describe movements of the
counter� Because SPEC describes exactly the be�
haviours which correspond to staying on the board�
the speci�cation

SPEC vT P

speci�es that P must describe movement within the
board � possibly restricted movement�

For example�

SPEC vT left � up � STOP

which we can check by writing down all the traces of
the process on the right and showing that they are
all traces of SPEC �



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

The speci�cation

SPEC vT P

limits what P can do� but does not require it to do
anything� For example�

SPEC vT STOP �

Speci�cations which simply restrict behaviour with�
out requiring any particular behaviour are known as
safety speci�cations� They specify that nothing bad
can happen� without specifying that anything good
must happen� STOP satis�es any safety speci�ca�
tion � doing nothing is always safe�

All speci�cations which can be expressed using trace
re�nement are safety speci�cations�

Speci�cations which require something positive to
happen are called liveness speci�cations� We will see
later how they can be expressed in CSP�

Example� If we de�ne P by

P � left � left � STOP

then we do not have SPEC vT P because

hleft � lefti � traces�P�

hleft � lefti �� traces�SPEC ��



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

� The Level Crossing �

As an example of writing a speci�cation in CSP� we
will look at a railway level crossing� One road and one
railway line cross each other� and as usual there is a
gate which can be lowered to prevent cars crossing
the railway� If the gate is raised� then cars can freely
cross the track� Trains can cross the road regardless
of whether the gate is up or down�

We will consider the obvious safety property for the
level crossing� which is�

There should never be a train and a car on the cross�

ing at the same time�

Of course there are many other properties which we
might like to specify� for example a liveness property�

Whenever a car approaches the crossing� it should

eventually be able to cross�

but for the moment we will stick to safety�

We will use the following events to represent the in�
teresting aspects of the behaviour of the system�

car �approach� car �enter � car �leave� train�approach�
train�enter � train�leave� gate�lower � gate�raise
crash



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

The processes CARS and TRAINS supply streams
of cars and trains�

CARS � car �approach � car �enter �

car �leave � CARS

TRAINS � train�approach � train�enter �

train�leave � TRAINS

The following processes model the behaviour of the
crossing� This is a complete description of all pos�
sibilities� including a car and a train simultaneously
using the crossing� Later we will add a control process
which uses the gate to restrict access by cars�

CR models the crossing with cars and trains� The
processes C � T � CT model the crossing when there
is a car� train or both present� respectively�

CR � car �approach � car �enter � C

� train�approach � train�enter � T

C � car �leave � CR

� train�approach � train�enter � CT

T � train�leave � CR

� car �approach � car �enter � CT

CT � crash � STOP



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

Cars can only enter the crossing when the gate is up�

GATE � gate�lower � gate�raise � GATE

� car �enter � GATE

De�ning some sets of events�

ET � ftrain�approach� train�enter � train�leaveg

EC � fcar �approach� car �enter � car �leaveg

EGC � fgate�raise� gate�lower � car �enterg

EX � fcrashg

ES � ET � EC � EGC � EX

allows us to de�ne the whole system as

SYSTEM � ��CR ET�EC�EX
kEGC GATE �

ES
kEC CARS � ES

kET TRAINS �

To specify that no crashes occur� we need a process
SPEC which can do any event except for crash�

SPEC � train�x � fapproach� enter � leaveg � SPEC

� car�x � fapproach� enter � leaveg � SPEC

� gate�x � fraise� lowerg � SPEC

In general� RUN A is the process which can repeat�
edly do events from the set A�

RUN A � x � A� RunA

so SPEC � RUN EC�ET�EGC �

The requirement that the crossing satis�es this spec�
i�cation is expressed by

SPEC vT SYSTEM �



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider �	

It is possible to use the FDR tool to check trace re�
�nement� and this is the easiest way to show that the
speci�cation is not satis�ed �not surprisingly� as we
haven�t imposed any restrictions on when the gate
can be raised or lowered
�

Now we will de�ne a process CONTROL which�
when placed in parallel with SYSTEM � will constrain
the behaviour so that whenever a train approaches
the gate must be lowered� This will be achieved by
making CONTROL and SYSTEM synchronise on
certain events� We hope that the result will be a
system which satis�es the safety speci�cation�

CONTROL � �train�approach � gate�lower �

train�enter � train�leave �

gate�raise � CONTROL�

� �car �approach � car �enter �

car �leave � CONTROL�

SAFE SYSTEM �

SYSTEM ES
kET�EC�EGC CONTROL

Again� FDR can be used to test whether

SPEC vT SAFE SYSTEM

and this time we will �nd that it does�



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider �


Here is an alternative way of checking SYSTEM �
Notice that when a car and a train use the crossing
at the same time� the event crash occurs� and the
system stops� This is the only point at which we have
deliberately introduced STOP into the system� and
we hope that there are no other deadlocks�

If we use FDR to check SYSTEM for deadlock�
freedom� then every time a deadlock is found we will
see a trace leading to STOP � If the trace ends in
crash� then we have identi�ed a violation of safety�
If the trace ends with some other event� then there
is another deadlock in the system� which presumably
represents a mistake in our model�

In general there are many di�erent ways of modelling
a system� and many di�erent ways of writing a spec�
i�cation� The challenge is to model the system in
such a way that the bad property appears as a kind
of behaviour �in this example� occurrence of crash

which can be ruled out by a suitable speci�cation�



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

� Another Level Crossing �

Here is another way of modelling the level crossing�
Remove the crash event� and change the de�nition
of CT to

CT � car �leave � T

� train�leave � C �

Also introduce

EG � fgate�raise� gate�lowerg

and change the de�nition of ES to

ES � EC � ET � EG �

Similarly to before�

SYSTEM � ��CR ET�EC
kEGC GATE �

ES
kEC CARS � ES

kET TRAINS �

The speci�cation now consists of two parts�

SPEC � � RUN EG

SPEC � � train�approach � train�enter �

train�leave � SPEC �

� car �approach � car �enter �

car �leave � SPEC �

SPEC � SPEC � EG
kET�EC SPEC �

SPEC � allows the gate to be raised and lowered
freely� SPEC � only allows trains and cars to enter
the crossing separately�



�

�

�

��� ��Concurrent and Real Time Systems� Traces c�Gay�Schneider ��

Again we can check

SPEC vT SYSTEM

which is not true� and de�ne

SAFE SYSTEM � SYSTEM ES
kES CONTROL

and check

SPEC vT SAFE SYSTEM

which is true�



�

�

�

��� ��Concurrent and Real Time Systems� Speci�cation c�Gay�Schneider ��

� Input and Output �

So far we have treated all events in the same way�
regardless of whether they are thought of as inputs or
outputs� It is useful� however� to introduce separate
notation for inputs and outputs�

We will use events of the form c�v where c is the
name of a channel and v is the value of a message
passing along the channel� Each channel has a type�
which is simply the set of possible values which can
be transmitted along it� If the type of c is T � then
the set of events associated with c is fc�t j t � Tg�

We can de�ne two new forms of pre�xing� The pro�
cess c�v � P outputs the message v on the channel
c and then behaves like P � We require v � T � where
T is the type of c� In fact� c�v � P � c�v � P

�using the ordinary pre�x notation
� but the c�v no�
tation emphasises the fact that c and v are viewed
as a channel and a message�

The process c�x � T � P�x � is prepared to input
any value x of type T � and then behave like P�x ��
In the ordinary menu choice notation�

c�x � T � P�x � �
y � fc�z j z � Tg � P�message�y���

where� if y � c�z � message�y� � z �



�

�

�

��� ��Concurrent and Real Time Systems� Speci�cation c�Gay�Schneider ��

We can de�ne input and output pre�xes� using la�
belled transition rules� as follows�

�c�v � P�
c�v

�P

�v � T �
�c�x � T � P�x ��

c�v
�P�v �

Example�

COPYBIT � in�x � f�� �g � out �x � COPYBIT

COPY � in�x � N � out �x � COPY

SQUARE � in�x � Z � out ��x 	x � � SQUARE



�

�

�

��� ��Concurrent and Real Time Systems� Speci�cation c�Gay�Schneider ��

� Speci�cations �

Recall the de�nitions for the speci�cation of the sys�
tem consisting of the student and the college�

STUDENT � year� � �pass � YEAR�
j fail � STUDENT �

YEAR� � year� � �pass � YEAR�
j fail � YEAR��

YEAR� � year� � �pass � graduate � STOP

j fail � YEAR��

COLLEGE � fail � CF j pass � C �
C � � fail � CF j pass � C �
C � � fail � CF j pass � prize � STOP

CF � fail � CF � pass � CF

SYSTEM � STUDENT SkC COLLEGE

Initially we de�ned

SPECF � pass � SPECF j fail � SPECF

SPEC � pass � SPEC � j fail � SPECF

SPEC � � pass � SPEC � j fail � SPECF

SPEC � � pass � prize � STOP j fail � SPECF

but the speci�cation

SPECP vT SYSTEM

is not quite what we want� because it does not allow
SYSTEM to do year�� year�� year� or graduate�



�

�

�

��� ��Concurrent and Real Time Systems� Speci�cation c�Gay�Schneider ��

� The Correct Speci�cation �

To allow for year�� year�� year� and graduate we
de�ned

EXTRA � year� � EXTRA

j year� � EXTRA

j year� � EXTRA

j graduate � EXTRA

and then

SPEC � SPECP SPkE EXTRA

where

SP � fpass� fail � prizeg

E � fyear�� year�� year�� graduateg�

In general� to simplify the de�nition of processes such
as EXTRA� we can de�ne� for any set A of events�
the process RUN A�

RUN A � x � A� RUN A

Then EXTRA � RUN E � and SPECF � RUN fpass �failg�



�

�

�

��� ��Concurrent and Real Time Systems� Speci�cation c�Gay�Schneider ��

� Hiding �

There is an alternative approach to this kind of spec�
i�cation� Instead of putting a process in parallel with
the speci�cation to generate the events which we
don�t care about� we can hide those events from the
process being speci�ed�

If we de�ne

NEWSYSTEM �

SYSTEM n fyear�� year�� year�� graduateg

then the behaviour ofNEWSYSTEM is derived from
that of SYSTEM by making the listed events invisi�
ble� The traces of NEWSYSTEM are the traces of
SYSTEM with these events removed�

Now we can simply write

SPEC vT NEWSYSTEM �

as the speci�cation� SPEC only involves the events
which we are interested in� and the hiding in the de��
nition of NEWSYSTEM shows which events we are
leaving out of the speci�cation�



�

�

�

��� ��Concurrent and Real Time Systems� Speci�cation c�Gay�Schneider ��

� Using Hiding �

Returning to the level crossing example� there is an al�
ternative approach to specifying the desired behaviour�
We can use hiding to avoid specifying the events
which we don�t care about� In this case� all we want
to do is specify that crash never occurs�

If we hide all the events except crash from SYSTEM

�or SAFE SYSTEM 
 then all we need for the spec�
i�cation is a process which never does crash�

STOP vT SYSTEM n �ET � EC � EG�



�

�

�

��� ��Concurrent and Real Time Systems� Speci�cation c�Gay�Schneider �	

� De�ning Hiding �

The transition rules de�ning hiding are

P
a
�P �

�a � A�
P n A

�
�P � n A

P
a
�P �

�a �� A�
P n A

a
�P � n A

As we saw when using FDR� the hidden events are re�
placed by � � representing 	silent
 or 	internal
 events�
� events are not normally included in traces� although
as we have seen� FDR can show where in a trace the
� events occur� When we discuss traces� we will not
include � �



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider �


� Choice between processes �

We have used j and menu choice to describe pro�
cesses which have alternative behaviours� We have
emphasised that j is not an operation on processes�
but can only be used in conjunction with distinct pre�
�xing events�

However� CSP does have operators which can be used
to provide a choice between two �or more
 existing
processes� They are�

external choice � the environment can choose be�
tween the various processes

internal choice � the choice is made within the pro�
cess� and cannot be observed by the environment�

By the environment� we mean whatever processes are
in parallel with the process containing the choice�

The distinction between choice made by a process and
choice made by its environment is important� because
problems could arise if two processes have both been
given control over a particular choice�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider ��

� External Choice �

The process P � Q �pronounced 	P external choice
Q

 is initially prepared to do any event which either
P or Q could do� After the �rst event� the behaviour
is either that of P or that of Q � depending on which
process did the event� The choice is called 	external

because the environment �another process in parallel

can choose the �rst event�

Example� The journey from A �the bus station
 to
B is covered by two bus routes� the �� and the ����
If both buses are present at the bus station� then the
service o�ered to the passenger is described by the
process

SERVICE � BUS�� � BUS����

The passenger can choose which bus to use�

Here are possible de�nitions�

BUS�� �
board ����A� �pay ��� � alight ����B � STOP

j alight ����A� STOP�

BUS��� �
board �����A� �pay ��� � alight �����B � STOP

j alight �����A� STOP�

Note that in this case� we do not think of events such
as alight �����B as related to input or output�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 	�

If the passenger is de�ned by

PASS � board ����A� pay ���

� alight ����B � STOP

then we can consider what happens when the pas�
senger and the bus service interact� i�e� when we con�
struct

SERVICE
��SERVICE �k��PASS � PASS �

SERVICE can behave either as BUS�� or asBUS����
and the choice is made by the environment� The fact
that PASS can only do board ��� as its �rst event�
means that BUS�� is chosen�

The system behaves exactly as if we had written

SERVICE

� board ����A� �pay ��� � alight ����B � STOP

j alight ����A� STOP�
j board �����A� �pay ��� � alight �����B � STOP

j alight �����A� STOP�

In general� �a � P� � �b � Q� is equivalent to
a � P j b � Q � and it is possible to use � instead
of j �this is what FDR does
�

However� we can also write �a � P� � �a � Q�
�remember that a � P j a � Q is illegal
 � we
will see what this means soon�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 	�

� De�ning External Choice �

Here are the transition rules for external choice�

P
a
�P �

P � Q
a
�P �

Q
a
�Q �

P � Q
a
�Q �

P
�
�P �

P � Q
�
�P �

� Q

Q
�
�Q �

P � Q
�
�P � Q �

The �rst two capture the intention that the choice
is resolved by the �rst event� The second two al�
low either process to change state internally without
resolving the choice�

Example� Going back to

SERVICE � BUS�� � BUS���

we have the transitions

SERVICE
board ����A

�

pay ��� � � � � j alight ����A� STOP

SERVICE
board �����A

�

pay ��� � � � � j alight �����A� STOP



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 	�

� Internal Choice �

The process P u Q describes a choice between P

and Q � but the environment has no control over the
choice� Internal choice is often also known as nonde�
terministic choice� The choice is resolved internally
by the process�

Suppose the bus company agrees to provide a bus
from A to B� but does not say whether it will be the
�� or the ���� The situation at the bus station is
now described by the process

SERVICE � BUS�� u BUS����

We should interpret this as a speci�cation of a bus
service� The company could implement the service by
always providing bus ��� or by deciding each morning
which bus to provide� etc� The passenger has no
control over the decision� and cannot tell which bus
will be available until she arrives at the bus station�

If a system is speci�ed by the description P u Q �
then all of the following are acceptable implementa�
tions�

� provide both P and Q � and use some internal
means to choose between them

� just provide P

� just provide Q



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 	�

� Internal Choice �

To de�ne internal choice by means of transition rules�

we use the internal event � � A transition P
�
�Q

represents a change of state which is not accompa�
nied by any observable event� it is a change of state
whose occurrence cannot be observed directly by the
environment� We use � transitions to model the res�
olution of an internal choice�

Here are the transition rules�

P u Q
�
�P P u Q

�
�Q

Note that these rules capture one approach to imple�
menting P u Q � namely to implement both P and
Q and then choose between them at random� In or�
der to give transition rules we are forced to choose
an implementation� and this is the most general�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 	�

� Example �

Consider

SERVICE � BUS�� u BUS���

again� and put it in parallel with PASS � According to
the transition rules� the �rst event which SERVICE
does will be a � event� resulting in either BUS�� or
BUS���� All the events of PASS require synchroni�
sation� so nothing can happen until � has been done�

There are two ways for SERVICE to do � � The �rst
results in

BUS��
��SERVICE �k��PASS � PASS

and then PASS can interact with BUS���

The other possibility results in

BUS���
��SERVICE �k��PASS � PASS

and now the whole system stops because BUS���
and PASS cannot synchronise on any events� This
is another example of deadlock�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 	�

� Another example �

Keep the de�nition

SERVICE � BUS�� u BUS���

and suppose that there is also a train service from
A to B� described by the process TRAIN � Now the
options available to the passenger are described by
the process

TRAIN � SERVICE

which expands to

TRAIN � �BUS�� u BUS�����

We have the transition

BUS�� u BUS���
�
�BUS��

and so the transition rules for external choice give

TRAIN � �BUS�� u BUS����

TRAIN � BUS��

�

�

We can interpret this transition as the fact that one
bus service may disappear while the passenger is still
thinking about whether to take the bus or the train�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 	�

If the de�nition of TRAIN is

TRAIN � board �train�A� alight �train�B

� STOP

then there is also the transition

TRAIN � �BUS�� u BUS����

alight �train�B � STOP

board �train�A

�

which we can interpret as the passenger choosing the
train without ever discovering which bus is available�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 		

� Nondeterminism �

The �rst form of choice� j� is a special case of external
choice� The process

a � P j b � Q

is equivalent to

a � P � b � Q �

However� general external choice has some extra power�
Because it is possible to construct an external choice
between any two processes� we can write� for example

a � P � a � Q

�recall that a � P j a � Q is forbidden
�

We consider � to have higher precedence than ��
so that this process is the same as

�a � P� � �a � Q��

What does this mean� The process

a � P � a � Q

can either do a and then behave like P � or do a and
behave like Q � The environment cannot in�uence
which of these possibilities will occur� all it can do is
choose to do a in order to interact�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 	


More generally� the external choice

a � P � a � Q � b � R

allows the environment to choose between a and b�
but if a is chosen then the subsequent behaviour
could be that of either P or Q �

Using external choice with several occurrences of the
same pre�xing event leads to nondeterminism� in the
sense that the event which is observed does not de�
termine the subsequent behaviour�

We will eventually see that

a � P � a � Q � a � P u a � Q

which emphasises the fact that the environment can�
not choose between P and Q �



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 	�

� Connection Diagrams �

We can think of a process P with alphabet A �
fa� b� cg as a box with three possible points of con�
nection to the outside world� Similarly� Q with al�
phabet B � fb� c� dg�

P

c

Qa db b

c
If P and Q are put in parallel� b and c are events
which they may �indeed must
 jointly participate in�
This can be represented by joining the appropriate
lines� of course� the events b and c are still available
for connection to other processes�

b

P Qa d

c

Of course we can also consider the process P AkB Q

as a single box�

a

b

c

dP
A
k
B
Q



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 
�

� Generalized Operators �

We have seen binary �two�argument
 forms of internal
and external choice� and parallel composition� There
are more general forms of all these operators� which
provide a compact notation for a combination of an
arbitrary number of processes�

Suppose we want to de�ne a process RELAY with
n input channels of type T �called in�� � � � in�n
 and
n output channels of type T �called out �� � � � out �n�
This process should receive a message on any input
channel and send it out on the corresponding output
channel� repeatedly�

We need to de�ne

RELAY � in���x �� out ���xT � RELAY

� in���x �� out ���xT � RELAY
���

� in�n�x � T � out �n �x � RELAY �

It is possible to shorten this de�nition as follows�

RELAY ��i�f������ng in�i�x �� out �i �x � RELAY

In general� if I is a �nite indexing set and for each
i � I there is a process Pi � then the process

�i�I Pi

is de�ned�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 
�

It behaves as we would expect� given the example
above� Formally the transition rules are

Pj
a
�P �

j � I

�i�I Pi
a
�P �

and� to deal with internal events�

Pj
�
�P �

j j � I

�i�I Pi
�
��i�I P

�
i

In the second rule� P �
i � Pi for i �� j �

� General Internal Choice �

The same applies to internal choice� If I is an index�
ing set ��nite or in�nite
 and for each i � I there is
a process Pi � then the process

ui�I Pi

is a process which can behave like any of the Pi � Here
is the transition rule�

i � I

ui�I Pi
�
�Pi

Example� A random number generator could be de�
scribed by the process

ui�N out �i � STOP

Remember that u is a speci�cation construct�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 
�

� General Parallel �

If I is a �nite indexing set such that for each i � I

there is a process Pi and an interface set Ai � then
the process

ki�IAi
Pi

is de�ned�

Any event a requires synchronisation from all pro�
cesses Pi for which a � Ai �

Example� A group of people must all be present for
a meeting to take place� If N is the set of all the
people�s names� then we can de�ne the interface and
behaviour of each person as follows�

An � fenter �n� leave�n�meetingg

PERSONn � enter �n � PRESENTn

PRESENTn � leave�n � PERSONn

� meeting � PRESENTn

The process

GROUP �kn�NAn
PERSONn

describes the situation�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 
�

� Shared Resources �

It is common in concurrent systems for a resource to
be shared between a number of processes� Examples
might be a printer or a �le server� or an individual �le�
It is straightforward to describe this kind of situation
by placing several processes in parallel�

Example� Two users sharing a printer�

PRINTER � request� � print � PRINTER

� request� � print � PRINTER

USER� � request� � work� � USER�

USER� � request� � work� � USER�

The parallel combination

USER� k USER� k PRINTER

allows each user to work independently� but requires
synchronisation on request� and request� events� If
both users want to print at the same time� one of
them gets in �rst and the other has to wait�

This is �ne� although there is nothing to prevent
USER� from getting access to the printer every time�
and excluding USER��



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 
�

� Deadlock �

Now consider a situation in which there are two shared
resources� and both of them must be acquired before
some task can be carried out� One example would
be two shared �les� and two programs� both of which
need access to both �les simultaneously�

Here is an example borrowed from Schneider� Two
children share a paintbox and an easel� If one child
wants to paint� she has to �nd the box and the easel�
after painting� she drops both the box and the easel�

ELLA �

�ella�get �box � ella�get �easel � ella�paint �

ella�put �box � ella�put �easel � ELLA�

� �ella�get �easel � ella�get �box � ella�paint �

ella�put �easel � ella�put �box � ELLA�

KATE �

�kate�get �box � kate�get �easel � kate�paint �

kate�put �box � kate�put �easel � KATE �

� �kate�get �easel � kate�get �box � kate�paint �

kate�put �easel � kate�put �box � KATE �



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 
�

The easel and the box can each be used by just one
child at a time�

EASEL �

ella�get �easel � ella�put �easel � EASEL

� kate�get �easel � kate�put �easel � EASEL

BOX �

ella�get �box � ella�put �box � BOX

� kate�get �box � kate�put �box � BOX

The combination of the two girls� the box and the
easel is

PAINTING � ELLA k KATE k EASEL k BOX

There is a problem with these de�nitions� If both
children decide to paint at about the same time� it is
possible that one of them �nds the box �for example�
ella�get �box happens
 and then the other �nds the
easel �for example� kate�get �easel
� Then none of
the processes can do another event� ELLA is wait�
ing to do ella�get �easel and KATE is waiting to do
kate�get �box � In e�ect� each child is waiting for the
other� and nothing happens� The system as a whole�
after doing two events� has reached a state of STOP �
This is an example of a deadlock�

�Draw a transition diagram for this system�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 
�

Another example �also from Schneider
� two furniture
movers who need to move a table and a piano� Each
object requires two people to lift it�

PETE � lift �piano � PETE

u lift �table � PETE

DAVE � lift �piano � DAVE

u lift �table � DAVE

TEAM � PETE k DAVE

If both people make the same choice� they are able
to cooperate in lifting an object� If their choices are
di�erent� then the result is deadlock�

PETE
�
� lift �piano � PETE

DAVE
�
� lift �table � DAVE

and

lift �piano � PETE k lift �table � DAVE

cannot do anything� it is equivalent to STOP � or
deadlock�

�Draw a transition diagram for this system� includ�
ing the � transitions�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 
	

If the de�nition of PETE is changed� then the prob�
lem can be avoided�

PETE � � lift �piano � PETE

� lift �table � PETE

In these examples� our intention was to produce a
system whose behaviour continues inde�nitely� and
we view termination �reaching STOP
 as deadlock�
If we want to distinguish between intended and un�
intended termination� then we can introduce a new
event to indicate successful termination� �Conven�
tional CSP notation for such an event is X� and the
process SKIP is de�ned by X � STOP � Roscoe�s
presentation of CSP deals with SKIP in detail� we
will not use it�


In general� if we want to check whether a given pro�
cess can deadlock� we have to examine all its possible
behaviours �e�ectively constructing a state transition
diagram
 and look to see whether any STOP states
appear� An alternative is to exploit regularity in the
structure of the process to construct a mathematical
argument proving that deadlock is impossible�

FDR can check for possible deadlocks in a system�
and is able to handle reasonably large systems �con�
taining a few million states
 e�ciently�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 



� Livelock �

An attempt to prevent ELLA andKATE from dead�
locking might adapt ELLA�s description so that she
can return items before they have been used� rather
than wait inde�nitely for them to become available�
Thus extra choices are introduced for ELLA when
she holds only one item�

ELLA � ella�get �box �

�ella�put �box � ELLA

� ella�get �easel � ella�paint �

ella�put �box � ella�put �easel � ELLA�

� ella�get �easel �

�ella�put �easel � ELLA

� ella�get �box � ella�paint �

ella�put �easel � ella�put �box � ELLA�

If we are interested only in the paint events� then we
might hide the put and get events� The system we
wish to consider is

SYSTEM � PAINTING n INT

where

INT � fella� kateg�fput � getg�feasel � boxg



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider 
�

However� it is possible for ELLA to loop forever� re�
peatedly getting an item and then immediately putting
it back� without achieving any painting� Because
these events are all hidden� this becomes an in�nite
loop of � events� This is what CSP calls livelock� or
divergence�the possibility of an in�nite sequence of
� events�

FDR can be used to detect divergence� and indeed
detects it for this example� �Select 	Livelock
 from
the tabs below the menu bar� then select SYSTEM
in the 	Implementation
 �eld� Clicking on 	Check

does a check for divergence�
 A process that can
diverge can never be guaranteed to make any real
progress�

Because the parallel operator in CSP does not make
any guarantees about how often each process will
be executed� �it is not necessarily fair to KATE or
ELLA
 and the choice operator makes no guarantees
about how often each of its options will be executed�
it is possible for this painting system to execute for
ever without performing a paint event� However� a
real implementation might well be fair to KATE �
and thus not be divergent in practice� Care is needed
to ensure that the situation detected by FDR would
really arise in the situation being modelled�



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider ��

� Channels and Connections �

COPYBIT � in�x �� out �x � COPYBIT

where we suppose that

in�COPYBIT � � out�COPYBIT � � f�� �g�

COPYBIT has two channels� in and out � It re�
peatedly receives a single bit on the in channel and
outputs it on the out channel�

��COPYBIT � � fin��� in��� out ��� out ��g�

By convention� a channel is used for communication
between two processes� and in one direction only�
Each channel of a process is either an output channel
or an input channel� according to its use�

In connection diagrams� channels are drawn as ar�
rows� labelled with the channel name�

COPYBIT
in out



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider ��

A variation on COPYBIT is an inverter�

NOT � in�x �� out ���
 x � � NOT

This illustrates the way that in general an output
value may be an expression involving values which
have previously been input�

Suppose we want to connect two copies of NOT
together� so that the output of one becomes the input
of the other�

NOT outin NOT outin

We would like to do this by placing them in parallel�
but there is a problem� an input in�� or in�� is am�
biguously an input for both processes� and there is no
link between the out channel on the left and the in
channel to which it should be connected�

To solve this problem we introduce some new nota�
tion� renaming� De�ning two functions f and g on
events by

f �out �x � � mid �x g�out �x � � out �x
f �in�x � � in�x g�in�x � � mid �x

�so we have also introduced a new channel called
mid
 then f �NOT � is NOT with all events renamed
according to f �



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider ��

f �NOT � behaves as if de�ned by

f �NOT � � in�x �� mid ���
 x � � f �NOT �

and similarly g�NOT � behaves as if de�ned by

g�NOT � � mid�x �� out ���
 x � � g�NOT ��

In general� if P is any process and f � ��P� � A is a
function� the f �P� has alphabet A and has transitions
de�ned by

P
a
�P �

f �P�
f �a�

� f �P ��

Now we can form f �NOT � k g�NOT �� and events
on the mid channel represent messages sent from
f �NOT � to g�NOT �� Synchronisation is required
for the events mid �� and mid ���

A possible sequence of transitions of f �NOT � k g�NOT �
is�

hin���mid ��� out ��� in���mid ��� in��i



�

�

�

��� ��Concurrent and Real Time Systems� Choice between processes c�Gay�Schneider ��

In general if c is an output channel of P and an input
channel of Q � then in P k Q communication occurs
on channel c each time P does the event c�v �outputs
message v 
 and Q simultaneously does the event c�v
�inputs message v 
� Q is prepared to accept any c�x �
so it is P which determines the actual message�

We require c�P� � c�Q�� We can then write c for
c�P��

In f �NOT � k g�NOT � the mid �� and mid �� events
are visible outside the system� Potentially they could
be interfered with by other processes� although we
would not normally want this to happen� for example�

f �NOT � k g�NOT � k STOPmid

cannot do the mid events�

The hiding operator can be used to convert mid into
a local channel�

�f �NOT � k g�NOT �� n mid �



�

�

�

��� ��Concurrent and Real Time Systems� Examples c�Gay�Schneider ��

� The Dining Philosophers �

Five philosophers live in a college� they spend most of
their time thinking� but occasionally become hungry�
The college has a communal dining room� with a cir�
cular table and �ve chairs� In the middle of the table
is a large bowl of rice� and the table is set with �ve
plates� There are also �ve chopsticks� one between
each pair of plates�

	

� �

�

�

� �

�

�

	

When a philosopher is hungry� he enters the dining
room� sits down in his chair� picks up the chopsticks
on either side of his plate ��rst the one on the left�
then the one on the right
� and eats� Two chopsticks
are needed to eat rice� so if one of the chopsticks is
already in use� he has to wait� When the philosopher
has �nished eating he puts down the chopsticks� gets
up from the chair� and leaves the dining room�



�

�

�

��� ��Concurrent and Real Time Systems� Examples c�Gay�Schneider ��

We will model this system in CSP� and analyse its
behaviour� The relevant components are the �ve
philosophers� which we will model as processes
PHIL� � � �PHIL�� and the �ve chopsticks� which we
will model as processes CHOP� � � �CHOP��

Using the symbols � and � to denote addition and
subtraction modulo � �so that 	 � � � � and � �
� � 	
� philosopher PHILi will sit in seat i and use
chopsticks i and i � ��

The alphabet of PHILi is

��PHILi� � fsitdowni � getupi �

pickup�i �i � pickup�i ��i � ���

putdown�i �i � putdown�i ��i � ��g

In the events pickup�i �i etc� the 	�
 is being used
purely as a symbol�

The event pickup�i �i represents PHILi picking up
chopstick i � and so on�

We will ignore the actions of eating� thinking� and
entering and leaving the dining room�

Because the alphabets of the processes PHILi are
mutually disjoint� there can be no direct interaction
between the philosophers� The only way in which
they a�ect each other will be as a consequence of
the fact that they are competing for access to the
chopsticks�



�

�

�

��� ��Concurrent and Real Time Systems� Examples c�Gay�Schneider ��

The relevant events for the chopsticks are the pickup
and putdown events� CHOPi can potentially be
picked up or put down by either PHILi or PHILi���

��CHOPi� � fpickup�i �i � pickup��i � ���i �

putdown�i �i � putdown��i � ���ig

We will de�ne the system as a concurrent combina�
tion of the philosophers and the chopsticks�

PHILS � ki����� PHILi

CHOPS � ki����� CHOPi

COLLEGE � PHILS k CHOPS

CHOP� CHOP�

putdown����

PHIL�

PHIL�

PHIL�PHIL�

PHIL�

CHOP�

CHOP�

CHOP�

getup�sitdown�

pickup����

pickup����

putdown����



�

�

�

��� ��Concurrent and Real Time Systems� Examples c�Gay�Schneider �	

Each process PHILi simply cycles through a sequence
of six events�

PHILi � sitdowni � pickup�i ��i � �� � pickup�i �i �

putdown�i ��i � �� � putdown�i �i �

getupi � PHILi

Each process CHOPi can be repeatedly picked up
and put down� but there is a choice of who picks it
up�

CHOPi �
pickup�i �i � putdown�i �i � CHOPi

� pickup��i � ���i � putdown��i � ���i � CHOPi

Now we can look at the possible behaviour of COLLEGE �
Suppose all the philosophers sit down in order� and
then each one picks up the chopstick to his left�

What can happen next� Each PHILi can only do
pickup�i �i � which requires synchronisation with CHOPi �
However� CHOPi has just done pickup��i � ���i and
therefore can only do putdown��i � ���i next� This
means that there is no possible next event for COLLEGE �
We have a deadlock�



�

�

�

��� ��Concurrent and Real Time Systems� Examples c�Gay�Schneider �


How can we modify COLLEGE to remove the pos�
sibility of deadlock� There are a number of obvious
but unsatisfactory ideas�

� Provide two chopsticks for each philosopher� But
if the chopsticks represent scarce resources� this
may not be feasible�

� Provide a single extra chopstick� in the middle of
the table� which can be used by any of the philoso�
phers� Similarly� this may not be feasible�

�Modify the de�nition of just one of the philoso�
phers� so that the chopsticks are picked up in the
opposite order� This will work �although it takes
some thought to be sure
 but it breaks the sym�
metry of the system�

Instead we will try to control the way in which the
philosophers sit down� the idea being that if only �
philosophers are seated at any one time� then even if
everyone picks up the left chopstick� one philospher
will be sitting on the left of an empty place� and can
pick up the chopstick to his right�

As we have seen� the behaviour of a system can be
controlled by adding another process in parallel� and
taking advantage of the fact that certain events re�
quire synchronisation�



�

�

�

��� ��Concurrent and Real Time Systems� Examples c�Gay�Schneider ��

We can de�ne a process BUTLER with alphabet

��BUTLER� � D � U �

where

D � fsitdown�� � � � � sitdown�g

U � fgetup�� � � � � getup�g�

to control the sitting down and getting up of the
philosophers� BUTLER is de�ned in terms of aux�
iliary processes BUTLER�� � � � �BUTLER�� all with
alphabet ��BUTLER��

BUTLER� � x � D � BUTLER�

BUTLERi � x � D � BUTLERi��

� y � U � BUTLERi�� � � i � �

BUTLER� � y � U � BUTLER�

BUTLER � BUTLER�

The notation in the second line is shorthand for

BUTLERi � z � �D � U � � P�z �

where
P�z � � BUTLERi�� if z � D

� BUTLERi�� if z � U �

Now we can de�ne

NEWCOLLEGE � COLLEGE k BUTLER

�Convince yourself thatNEWCOLLEGE does not
deadlock� How formal can you be�



�

�

�

��� ��Concurrent and Real Time Systems� Examples c�Gay�Schneider ���

We could consider checking the entire state space
of the system� to discover whether or not it can
deadlock� Since each philosopher has � states and
each chopstick has � states� the total number of
possible states of COLLEGE is �	 � �	� or about
��� million� though not all of these will be reach�
able �since the states of the chopsticks must be con�
sistent with the states of the philosophers
� Since
the e�ect of BUTLER is to restrict the number of
states� this is also a limit on the number of states of
NEWCOLLEGE � Systems of this complexity are
within the scope of current software tools such as
FDR�



�

�

�

��� ��Concurrent and Real Time Systems� Examples c�Gay�Schneider ���

� The Cyclic Scheduler �

Suppose there are a number of processes which we
need to control� Each process can be started by a
start event and uses a �nish event to indicate that
it has �nished� Suppose also that we want to start
the processes in order� returning to the �rst when the
last has been started� when a process has �nished it
can be started again� but only when its turn comes
round�

We will de�ne a scheduler� which uses start and �nish

events to control the processes� The scheduler will be
implemented as a collection of cells �processes
� each
of which communicates with one of the processes be�
ing controlled� and also with other cells�

The next slide has a diagram of the case where there
are � processes to control� � denotes addition mod�
ulo the number of processes�

The idea is that each cell waits for a signal on the c
channel to its left� which means that the process to
its left has been started� Then the cell starts its own
process� and sends a signal on the c channel to its
right� to tell the next cell that it can start its process�
Also� each cell has to wait for its process to do �nish
before starting it again�



�

�

�

��� ��Concurrent and Real Time Systems� Examples c�Gay�Schneider ���

CELLi

�nish�i

c�i c��i � ��

start �i

In order to start everything o�� one cell must begin
by starting its process instead of waiting�

STARTCELLi � start �i � c��i � �� �

� �nish�i � c�i � STARTCELLi

� c�i � �nish�i � STARTCELLi�

The other processes wait for c�i

WAITCELLi � c�i � STARTCELLi

It is convenient to de�ne
CELL� � STARTCELL�

CELLi � WAITCELLi �i � ��

and then

SCHED � �k��i�nfstart �i ��nish�i �c�i �c��i���gCELLi� n

fc�i j � � i � ng



�

�

�

��� ��Concurrent and Real Time Systems� Examples c�Gay�Schneider ���

There are three properties which we would like to
verify for the scheduler� The �rst is that for each
i � the events start �i and �nish�i happen alternately�
beginning with start �i � The second is that the events
start ��� � � � � start ��n
�� happen in the correct cyclic
order� The third is deadlock�freedom�

For the �rst property� we can de�ne a process speci�
fying alternation of start and �nish for each cell�

ALTi � start �i � �nish�i � ALTi

and combine them in parallel to produce a speci�ca�
tion for the scheduler as a whole�

ALTSPEC � k
��i�n
fstart �i ��nish�igALTi

In this parallel combination the alphabets are all dis�
joint� and no synchronisation is required� It is simply
an independent parallel combination of the ALT pro�
cesses�

The speci�cation

ALTSPEC vT SCHED

can be checked with FDR�

For the second property� de�ne

CYCLEi � start �i � CYCLEi�� �� � i � n�

and specify

CYCLE� v SCHED n f�nish�i j � � i � ng�



�

�

�

��� ��Concurrent and Real Time Systems� Refusals c�Gay�Schneider ���

� Traces and Choice �

Which traces can be produced by P � Q and P u
Q� We know that P � Q can do the �rst event of
either P or Q � and then behave like the remainder of
P or Q � Therefore any trace of either P or Q can
be produced by P � Q � and we have

traces�P � Q� � traces�P� � traces�Q��

P u Q always does � �rst� and then behaves like
either P or Q � Because � does not appear in traces�
we also have

traces�P u Q� � traces�P� � traces�Q��

We have previously considered trace equivalence� writ�
ten P �T Q � as a de�nition of when two processes
should be considered equal or interchangeable� How�
ever� we can now see that P � Q �T P u Q �
even though internal and external choice have been
designed to behave in di�erent ways�

In general� trace equivalence is not suitable as a def�
inition of process equivalence�



�

�

�

��� ��Concurrent and Real Time Systems� Refusals c�Gay�Schneider ���

Before we introduced u and � all processes were de�
terministic � the internal state was always deter�
mined by the observable events� For deterministic
processes� traces are all we need to know� and trace
equivalence is adequate� But the whole point of in�
troducing the u operator was so that a process could
make an internal state change without doing anything
observable� Similarly� if P and Q have a common
event a available at the �rst step� then observation
of the event a from P � Q does not tell us what the
internal state has become�

We will now try to say exactly what the di�erence
between P u Q and P � Q is� and develop a new
notion of process equivalence accordingly�



�

�

�

��� ��Concurrent and Real Time Systems� Refusals c�Gay�Schneider ���

� Refusals �

Suppose we have the following de�nitions�

P � a � P

Q � b � Q

What happens if we put each of P � Q and P u Q

in an environment consisting of P� i�e� if we look at
�P � Q� fa�bgkfa�bg P and �P u Q� fa�bgkfa�bg P �

First� we have P � Q
a
�P

and P
a
�P

so

�P � Q� fa�bgkfa�bg P
a
�P fa�bgkfa�bg P �

Also�

P fa�bgkfa�bg P
a
�P fa�bgkfa�bg P

so

P fa�bgkfa�bg P � P

�they both satisfy the same recursive de�nition
�

So

�P � Q� fa�bgkfa�bg P � a � P

i�e�

�P � Q� fa�bgkfa�bg P � P �



�

�

�

��� ��Concurrent and Real Time Systems� Refusals c�Gay�Schneider ��	

On the other hand�

�P u Q� fa�bgkfa�bg P
�
�P fa�bgkfa�bg P

and

�P u Q� fa�bgkfa�bg P
�
�Q fa�bgkfa�bg P

so

�P u Q� fa�bgkfa�bg P �

�P fa�bgkfa�bg P� u �Q fa�bgkfa�bg P��

�This is a loose statement as we haven�t decided what
	�
 means yet�


We know that P fa�bgkfa�bg P � P

and Q fa�bgkfa�bg P � STOP

So

�P u Q� fa�bgkfa�bg P � P u STOP �

This shows that P � Q and P u Q behave di�er�
ently when put in parallel with P � One is just P �
the other can internally choose to deadlock �become
STOP
�

We can use this observation to develop a general
approach to distinguishing between nondeterministic
processes� We will consider putting a process P in
an environment Q � where the alphabets of P and Q
are the same� i�e� constructing P

��P�k��P� Q �



�

�

�

��� ��Concurrent and Real Time Systems� Refusals c�Gay�Schneider ��


Let X be a set of events which are o�ered initially by
Q � If it is possible for P

��P�k��P� Q to deadlock at
the �rst step� then we say that X is a refusal of P �
The set of all refusals of P is obtained by considering
all possible sets X which could be initial event sets
of Q �

Examples�

�� The empty set is a refusal of every process� because
if Q � STOP then P

��P�k��P� Q � STOP �

�� Any set of events X is a refusal of STOP �

�� If a �� X then X is a refusal of a � P � So if
��P� � fa� b� cg then the refusals of a � P are fg�
fbg� fcg and fb� cg� Processes Q causing

�a � P� fa�b�cgkfa�b�cg Q

to deadlock include STOP � b � STOP � c � a �
STOP � �b � STOP� � �c � c � STOP�� etc�

�� The refusals of �a � c � STOP� � �b �
STOP� are fg and fcg�

�� The refusals of �a � c � STOP� u �b �
STOP� are fg� fag� fbg� fcg� fa� cg and fb� cg�



�

�

�

��� ��Concurrent and Real Time Systems� Refusals c�Gay�Schneider ���

We can de�ne

refusals�P� � fX j X � ��P� and

X is a refusal of Pg�

Note that refusals�P� is a set of sets of events� For
example�
refusals��a � STOP� u �b � STOP�� �
ffg� fag� fbg� fcg� fa� cg� fb� cgg�

In the examples we saw that
refusals��a � STOP� � �b � STOP�� ��
refusals��a � STOP� u �b � STOP���

In general� refusals�P � Q� �� refusals�P u Q��
and this will be the basis for a new de�nition of pro�
cess equality which allows us to distinguish between
internal and external choice�

We can now de�ne refusals for processes de�ned in
terms of the operators we have seen so far�

refusals�STOP � � fX j X � �g

where � is the set of all events being considered �
the universal set of events�

refusals�a � P� � fX j X � ���P�
 fag�g

Both of these de�nitions are subsumed by the de�ni�
tion for menu choice� if P � x � A� P�x � then

refusals�P� � fX j X � ���P�
 A�g



�

�

�

��� ��Concurrent and Real Time Systems� Refusals c�Gay�Schneider ���

If P can refuse X then so will P u Q if P is selected�
Similarly every refusal of Q is a possible refusal of
P u Q �

refusals�P u Q� � refusals�P� � refusals�Q�

P � Q can only refuse X if both P and Q can refuse
X �

refusals�P � Q� � refusals�P� � refusals�Q�

P AkB Q can refuse all events refused by P and all
events refused by Q �

refusals�P AkB Q� � fX � Y j X � refusals�P�

and Y � refusals�Q�g

Refusals allow us to distinguish formally between de�
terministic and nondeterministic processes� If a pro�
cess is deterministic then it can never refuse any event
which it could possibly do� In other words� if P is de�
terministic and a is a possible initial event for P � then
a does not appear in any refusal set of P �

Writing initials�P� for the set of possible initial events
of P �so initials�P� � fx j hx i � traces�P�g
� we
can say that if P is deterministic then

refusals�P� � fX j X � ��P� and

X � initials�P� � fgg�

Determinism means that any event which is possible
cannot be taken away by an internal state transition�



�

�

�

��� ��Concurrent and Real Time Systems� Refusals c�Gay�Schneider ���

Examples� If

P � a � c � STOP j b � STOP

then initials�P� � fa� bg and refusals�P� � ffg� fcgg�

If

P � �a � c � STOP� u �b � STOP�

then initials�P� � fa� bg and �as before


refusals�P� � ffg� fag� fbg� fcg� fa� cg� fb� cgg�

Although a is a possible initial event for P � P could
also internally choose to be b � STOP which re�
fuses a�

To de�ne nondeterminism properly� we need to con�
sider events refused not just at the �rst step� but after
any sequence of events� For example�

�a � b � STOP� � �a � c � STOP�

is nondeterministic� but this does not become appar�
ent until after the �rst event�

So� P is deterministic if and only if

 tr � traces�P� �

�refusals�P�tr � �
fX � ��P� j X � initials�P�tr � � fgg��

P�tr is the process whose behaviour is whatever P
could do after the trace tr �



�

�

�

��� ��Concurrent and Real Time Systems� Failures c�Gay�Schneider ���

� Failure Equivalence �

A �rst attempt at a new de�nition of process equiv�
alence might be to de�ne P �r Q as

traces�P� � traces�Q�
refusals�P� � refusals�Q�

but this is not quite what we want� It would make

a � ��b � STOP� � �c � STOP��

and

a � ��b � STOP� u �c � STOP��

equivalent� which is no better than using trace equiv�
alence� The problem is that looking at refusals can
only detect di�erences at the �rst step� As with the
de�nition of determinism� we need to look at events
refused after arbitrary traces have been observed�

The solution is to de�ne failures�P� as follows�

failures�P� � f�tr �X � j tr � traces�P�

and X � refusals�P�tr �g

and then say that P �F Q means

traces�P� � traces�Q�
and

failures�P� � failures�Q��



�

�

�

��� ��Concurrent and Real Time Systems� Failures c�Gay�Schneider ���

� Examples �

P � a � b � STOP

��P� � fa� bg

failures�P� � f �hi���� �hi� fbg��
�hai���� �hai� fag��
�ha� bi���� �ha� bi� fag��
�ha� bi� fbg�� �ha� bi� fa� bg�g

�� fbg

�� fag

�� fag� fbg� fa� bg

a

b



�

�

�

��� ��Concurrent and Real Time Systems� Failures c�Gay�Schneider ���

� Examples �ctd� �

P � a � STOP j b � STOP

��P� � fa� bg

failures�P� � f�hi���g
�f�hai�X � j X � fa� bg
�f�hbi�X � j X � fa� bg

a b

�

�� fag� fbg� fa� bg �� fag� fbg� fa� bg



�

�

�

��� ��Concurrent and Real Time Systems� Failures c�Gay�Schneider ���

� Examples �ctd� �

P � a � STOP j b � P

��P� � fa� bg

failures�P� � f�hbin��� j n � �g

�f�hbin a hai�X � j n � � �
X � fa� bgg

a

�

�� fag� fbg� fa� bg

b



�

�

�

��� ��Concurrent and Real Time Systems� Failures c�Gay�Schneider ���

� Examples �ctd� �

P � a � b � STOP u b � STOP

�� fbg �� fag

�� fag

�� fag� fbg� fa� bg

�� fag� fbg� fa� bg

a b

b

��



�

�

�

��� ��Concurrent and Real Time Systems� Failures c�Gay�Schneider ��	

� Examples �ctd� �

P � a � b � STOP � a � STOP

aa

�� fbg

�� fag

b
�� fag� fbg� fa� bg

�� fag� fbg� fa� bg



�

�

�

��� ��Concurrent and Real Time Systems� Failures c�Gay�Schneider ��


Recall that fg � refusals�P� for every process P �
This means that for every process P and every trace
tr � traces�P�� �tr � fg� � failures�P�� So traces
can be recovered from failures by

traces�P� � ftr j �tr � fg� � failures�P�g�

This means that if failures�P� � failures�Q� then
traces�P� � traces�Q�� so the de�nition of failure
equivalence can be simpli�ed to

failures�P� � failures�Q��

If P is deterministic� we can analyse failures�P�
slightly more�

failures�P�
� f�tr �X � j tr � traces�P� and X � refusals�P�tr �g
� f�tr �X � j tr � traces�P�

and X � initials�P�tr � � fgg
� f�tr �X � j tr � traces�P�

and X � fx j s a hx i � traces�P�g � fgg

which shows that failures�P� can be de�ned in terms
of traces�P��

So if P and Q are deterministic� and traces�P� �
traces�Q�� then failures�P� � failures�Q��

Any process de�ned using just STOP � pre�xing� menu
choice �or j
� k and guarded recursion� is determinis�
tic�



�

�

�

��� ��Concurrent and Real Time Systems� Failures c�Gay�Schneider ���

� Failure Re�nement �

Failure re�nement is de�ned in a similar way to trace
re�nement�

P vF Q

if and only if
failures�Q� � failures�P�

It is pronounced 	P is failure re�ned by Q
�

To see how failure re�nement can be used in speci��
cations� consider a very simple example� the process

SPEC � a � b � SPEC

Recall that if we use SPEC as a speci�cation with
trace re�nement� we get a safety speci�cation� Pro�
cesses P satisfying the speci�cation

SPEC vT P

include

P � STOP

P � a � STOP

P � a � �b � P � b � STOP�

P � a � b � P

What is the e�ect of specifying

SPEC vF P�



�

�

�

��� ��Concurrent and Real Time Systems� Failures c�Gay�Schneider ���

We need to calculate failures�SPEC �� In words �rst�
the traces of SPEC are alternating sequences of a
and b events� starting with a� After a trace ending in
a� SPEC refuses the sets � and fag� After a trace
ending in b� it refuses the sets � and fbg� So�

failures�SPEC � � f�ha� bin a hai��� j n � �g

� f�ha� bin a hai� fag� j n � �g

� f�ha� bin��� j n � �g

� f�ha� bin� fbg� j n � �g�

To determine whether SPEC vF STOP we need to
calculate that

failures�STOP� � f�hi���� �hi� fag�� �hi� fbg��

�hi� fa� bg�g

and then we can see that the failure pairs �hi� fag�
and �hi� fa� bg� are in failures�STOP� but not in
failures�SPEC �� Therefore it is not the case that
SPEC vF STOP � We could also write this as

SPEC �vF STOP �

Now look at P � a � STOP �

failures�a � STOP� � f�hi���� �hi� fbg�� �hai����

�hai� fag�� �hai� fbg��

�hai� fa� bg�g

The failure pairs �hai� fbg� and �hai� fa� bg� are in
failures�P� but not in failures�SPEC �� so again
SPEC �vF P �



�

�

�

��� ��Concurrent and Real Time Systems� Failures c�Gay�Schneider ���

� Exercise �

If we de�ne P � a � �b � P � b � STOP�� is
it true that SPEC vF P � Either show that all the
failure pairs of P are also failure pairs of SPEC � or
�nd a failure pair of P which is not a failure pair of
SPEC �

� Liveness �

SPEC vF P is a liveness speci�cation which re�
quires P to do certain events� Which de�nitions of
P satisfy the speci�cation� Obviously

P � a � b � P

does� because that is the same process as SPEC �
In fact this is the only process satisfying this speci��
cation� So in this example� the speci�cation is very
restrictive indeed� it pins down the implementation
precisely�



�

�

�

��� ��Concurrent and Real Time Systems� Failures c�Gay�Schneider ���

� Safety and Liveness �

Saying that tr � traces�P� is a positive statement�
it describes something that P can do� A speci�cation
of the form

SPEC vT P

puts a limit on the traces that P can do� so it is a
speci�cation which restricts behaviour�

Saying that �tr �X � � failures�P� is a negative state�
ment� it describes something that P cannot do� A
speci�cation of the form

SPEC vF P

puts a limit on what P can fail to do� so it requires
P to accept at least a certain range of behaviours�

Alternatively� P fails a safety �trace
 speci�cation by
doing too much� P fails a liveness �failure
 speci�ca�
tion by refusing too much� i�e� by not doing enough�

� Another Example �

Process P will have alphabet fa� b� cg� and we want
to specify that P must be able to do an in�nite se�
quence of alternating a and b events� starting with
a� we do not care when c events occur�



�

�

�

��� ��Concurrent and Real Time Systems� Failures c�Gay�Schneider ���

We can use the process

ALT � a � b � ALT

as a speci�cation for the a and b events� as before�
To allow the c events to occur freely we use hiding�
and express the speci�cation as

ALT vF �P n fcg�

De�nitions of P satisfying this speci�cation include

P � a � b � P

P � c � a � c � c � b � P

P � a � b � c � P

P � a � c � b � a � b � P

because in each case� P n fcg is the same process
as ALT �

De�nitions of P not satisfying the speci�cation in�
clude

Q � c � b � Q

P � a � �b � P � b � Q�

P � a � b � �P � a � c � STOP��



�

�

�

��� ��Concurrent and Real Time Systems� Failures c�Gay�Schneider ���

� Level Crossing Liveness �

In our model of the level crossing� there is an in�nite
stream of cars trying to cross� and also an in�nite
stream of trains� We can specify liveness �the re�
quirement that whenever a car approaches it should
eventually be allowed to cross� and similarly for the
trains
 as follows�

CARSPEC � car �approach � car �enter �

car �leave � CARSPEC

TRAINSPEC � train�approach � train�enter �

train�leave � TRAINSPEC

The speci�cations are

CARSPEC vF �SAFE SYSTEM n ftrain� gateg�

TRAINSPEC vF �SAFE SYSTEM n fcar � gateg�

�all the gate���� events are hidden� etc�


These speci�cations can be checked using FDR�



�

�

�

��� ��Concurrent and Real Time Systems� Failures c�Gay�Schneider ���

� Scheduler Liveness �

A liveness speci�cation for the cyclic scheduler is that
the processes continue to be started� in turn� forever�
This can be written

CYCLE� vF �SCHED n f�nishg�

where CYCLE� is the process which was used for
the safety speci�cation� and all the �nish�i events
are hidden� This speci�cation can be checked with
FDR�

Another liveness speci�cation might be to pick a par�
ticular process i and specify that start �i and �nish�i
keep happening alternately forever� This can be done
with a speci�cation process in which start �i and �nish�i
alternate� by hiding all the other start and �nish

events in SCHED �


