Phytotron Publications
Colasanti Lab
Maherali Lab
Posluszny Lab
Robb Lab
Rothstein Lab
Tetlow Lab
Colasanti Lab
Visit the Colasanti Lab home page.
2009
-
Joseph Colasanti and Viktoriya Coneva (2009). Mechanisms of floral induction in grasses: something borrowed, something new. Plant Physiology 149: 56-62.
-
Usadel, B., Obayashi, T., Mutwil, M., Giorgi, F.M., Bassel, G.W., Tanimoto, M., Chow, A., Steinhauser, D., Persson, S., Provart, N.J.(2009). Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant, Cell & Environment
2008
-
Mimi Tanimoto, Reynald Tremblay and Joseph Colasanti, 2008. Altered Gravitropic response, amyloplast sedimentation and circumnutation in the Arabidopsis shoot gravitropism 5 mutant are associated with reduced starch levels. Plant Molecular Biology 67, 57-59
-
Soon Ju Park, Song Lim Kim, Shinyoung Lee, Byoung Il Je, Hai Long Piao, Sung Han Park1, Chul Min Kim, Choong-Hwan Ryu, Su Hyun Park, Yuan-hu Xuan, Joseph Colasanti, Gynheung An and Chang-deok Han (2008) Rice Indeterminate1 (OsId1) is necessary for the expression of Ehd1 (Early heading date1) regardless of photoperiod. Plant Journal 56, 1018-1029.
-
Mimi Tanimoto, Reynald Tremblay and Joseph Colasanti (2008). Altered Gravitropic response, amyloplast sedimentation and circumnutation in the Arabidopsis shoot gravitropism 5 mutant are associated with reduced starch levels. Plant Molecular Biology 67, 57-59.
2007
-
Viktoriya Coneva, Tong Zhu and Joseph Colasanti (2007). Expression differences between normal and indeterminate1 maize suggest downstream targets of ID1, a floral transition regulator in maize. Journal of Experimental Botany 58, 3679-3693.
-
Ada YM Wong and Joseph Colasanti (2007). Maize floral regulatory protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition. Journal of Experimental Botany 58, 403-414.
-
2006
-
Joseph Colasanti, Reynald Tremblay, Ada Y.M. Wong, Viktoriya Coneva, Akiko Kozaki, and Barbara K. Mable (2006). The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genomics 7: 158.
2004
-
Akiko Kozaki, Sarah Hake and Joseph Colasanti (2004) The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties. Nucleic Acids Research 32, 1710-1720.
2001
-
Joseph Colasanti (2001). Some observations on grassy tillers (gt1). Maize Genetics Newsletter. 75: 2-3.
2000
-
Joseph Colasanti and Venkatesan Sundaresan (2000). Florigen enters the Molecular Age: Long Distance Signals that cause Plants to Flower. Trends in Biochemical Sciences 25, 236-240.
-
Paula McSteen, Debbie Laudencia-Chingcuanco and Joseph Colasanti (2000). A floret by any other name: control of meristem identity in maize. Trends in Plant Sciences 5, 61-66.
1998
-
Joseph Colasanti, Zhuang Yuan and Venkatesan Sundaresan (1998). The indeterminate Gene Encodes a Zinc-finger Protein and Regulates a Leaf-generated Signal Required for the Transition to Flowering in Maize. Cell 93, 593-603.
Maherali Lab
Visit the Maherali Lab home page.
2010
-
Maherali H., Caruso C.M., Sherrard M.E. & Latta R.G. 2010. Adaptive value and costs of physiological plasticity to soil moisture limitation in recombinant inbred lines of Avena barbata. American Naturalist, 175:211-224.
2009
-
Powell J.R., Parrent J.L., Klironomos, J.N., Hart, M.M., Rillig M.C. & Maherali H. 2009. Phylogenetic trait conservatism and the evolution of functional tradeoffs in arbuscular mycorrhizal fungi. Proceedings of the Royal Society, Biological Sciences, 276:4237-4245.
-
Maherali H., Walden A.E. & Husband B.C. 2009. Genome duplication and the evolution of physiological responses to water stress. New Phytologist, 184:721-731. The definitive version of this paper is available at http://www.blackwell-synergy.com/loi/nph
-
Maherali H., Caruso C.M. & Sherrard M.E. 2009. The adaptive significance of ontogenetic changes in leaf physiology: a test with Avena barbata. New Phytologist, 183:908-918. The definitive version of this paper is available at http://www.blackwell-synergy.com/loi/nph
-
Sherrard M.E., Maherali H., & Latta R.G. 2009. Water stress alters the genetic architecture of functional traits associated with drought adaptation in Avena barbata. Evolution, 63:702-715.
2008
-
Maherali H., Sherrard M.E., Clifford M.H. & Latta R.G. 2008. Leaf hydraulic conductivity and photosynthesis are genetically correlated in an annual grass. New Phytologist, 180:240-247. The definitive version of this paper is available at http://www.blackwell-synergy.com/loi/nph
-
Suwa T. & Maherali H. 2008. Effect of nutrient availability on the mechanisms of tolerance to herbivory in Avena barbata (Poaceae).American Journal of Botany, 95: 434-440.
2007
-
Maherali H. & Klironomos J.N. 2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 316: 1746-1748.
2006
-
Sherrard M.E. & Maherali H. 2006. The adaptive significance of drought escape in Avena barbata, an annual grass. Evolution, 60: 2478-2489.
-
Caruso C.M., Maherali H. & Sherrard M.E. 2006. Plasticity of physiology in Lobelia: testing for adaptation and constraint. Evolution, 60: 980-990.
Posluszny Lab
2008
-
Jean M. Gerrath, Theodore B. Guthrie, Tim A. Zitnak, and Usher Posluszny (2008). DEVELOPMENT OF THE AXILLARY BUD COMPLEX IN ECHINOCYSTIS LOBATA (CUCURBITACEAE): INTERPRETING THE CUCURBITACEOUS TENDRIL. American Journal of Botany 95(7): 773-781
2007
-
Susan A. Timmons, Usher Posluszny and Jean M. Gerrath (2007). Morphological and Anatomical development in the Vitaceae. IX. Comparative ontogeny and phylogenetic implications of Vitis rotundifolia Michx. Can. J. Bot. 85: 850-859
-
Susan A. Timmons, Usher Posluszny and Jean M. Gerrath (2007). Morphological and Anatomical development in the Vitaceae. X. Comparative ontogeny and phylogenetic implications of Cissus quadrangularis L. Can. J. Bot. 85: 860-872
Robb Lab
2009
-
Nazar, R.N., P. Chen, D. Dean and J. Robb. 2009. DNA chip analysis in diverse organisms with unsequenced genomes. Molecular Biotechnology, Published on-line September 16, 2009.
-
Robb, J., C.D.M. Castroverde, H.O. Shittu and R.N. Nazar. 2009. Patterns of Defence Gene Expression in the Tomato-Verticillium Interaction. Botany 87:993-1006.
-
E.F. Fradin, Z. Zhang, J.C. Juarez Ayala, C.D.M. Castroverde, R.N. Nazar, J. Robb, C-M. Liu and B.P.H.J. Thomma. 2009. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol. 150: 320-332.
-
H.O. Shittu, A.S. Shakir, R.N. Nazar and J. Robb. 2009. Endophyte-induced Verticillium protection in tomato is range-restricted. Plant Signaling & Behavior 4: 160-161.
-
Shittu, H.O., C.D.M. Castroverde, R.N. Nazar and J. Robb. 2009. Plant-endophyte interplay protects tomato against a virulent Verticillium. Planta: 229: 415-426.
2008
-
Chang, A., K-H. Lim, S-W. Lee, E.J. Robb and R.N. Nazar. 2008. Tomato PAL gene family: highly redundant but strongly underutilized. J. Biol Chem. 283: 33591-601.
Rothstein Lab
2009
-
Surya Kant, Yong-Mei Bi, Tong Zhu and Steven Rothstein. 2009. SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiology, 151; 691-701.
-
Surya Kant and Steven Rothstein. 2009. Auxin-responsive SAUR39 gene modulates auxin level in rice. Plant Signaling & Behavior, 4 (12); 68-70.
-
Andrew Schofield, Yong-Mei Bi, Surya Kant and Steven Rothstein. 2009. Over expression of STP13, a hexose transporter improves plant growth and nitrogen use in Arabidopsis thaliana seedlings. Plant, Cell & Environment, 32; 271-285.
-
Bi YM, Kant S, Clark J. Gidda S, Ming F, Xu J, Rochon A, Shelp B, Hao L, Zhao R, Mullen R, Zhu T and Rothstein SJ (2009) Increased nitrogen use efficiency in transgenic rice plants over-expressing a nitrogen responsive early nodulin gene identified from rice expression profiling. Plant, Cell and Environ. 32, 1749-1760.
-
Kant S, Bi YM, Zhu T, Rothstein SJ. (2009) SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol. 151, 691-701.
-
Yaish M, Peng M and Rothstein SJ (2009) AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation. Plant J 59(1):123-35
-
Schofield A, Bi YM, Kant S and Rothstein SJ (2009) Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings. Plant Cell Environ. 32, 271-285.
2008
-
Peng M, Hudson D, Schofield A, Tsao R, Yang R, Gu H, Bi YM., and Rothstein SJ (2008) Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. Journal of Experimental Botany 59, 2933-2944
-
Kant S, Bi YM, Weretilnyk E, Barak S & Rothstein SJ (2008) The Arabidopsis Halophytic Relative, Thellungiella halophila, Tolerates Nitrogen limiting Conditions by Maintaining Growth, Nitrogen Uptake and Assimilation. Plant Physiol. 147:1168-80
Tetlow Lab
-
Fushan Liu, Amina Makhmoudova, Elizabeth A. Lee, Robin Wait, Michael J. Emes,* and Ian J. Tetlow. (2009). The amylose extender mutant of maize conditions novel protein–protein interactions between starch biosynthetic enzymes in amyloplasts. Journal of Experimental Botany, Vol. 60, No. 15, pp. 4423–4440.